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Bifurcations in mean-field-theory annealing
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In this paper, we investigate bifurcation processes for the mean-field-tiigi5y) annealing applied to
traveling-salesman probleni3SPS. Due to the symmetries of the TSP free energy function, some special
bifurcations occur: cyclic symmetry breaking bifurcations and reverse symmetry breaking bifurcations. Saddle-
node bifurcations also occur. Which type of bifurcation occurs depends on the symmetry of the eigenvector
that corresponds to the zero eigenvalue mode of the free energy curvature matrix at the bifurcation point. In the
MFT annealing process, a sequence of bifurcations occurs and the bifurcation structure affects the quality of
the annealing solution. It is shown that the annealing solution in this process is not unique in general, and it is
not always the optimal solution. Our approach can also be applied to the Potts spin model and its bifurcation
structure is almost the same as that of the MFT. The practical implications of our results are also discussed.

PACS numbsdis): 87.10+e, 05.50+q

[. INTRODUCTION [9] estimated a critical temperature by using a stability analy-
sis. However, they did not study what kind of bifurcation
In his original paper, Hopfield[1] showed that a occurs. In this paper, we theoretically study bifurcation
Lyapunov function can be defined for the analog Hopfieldstructures in the MFT annealing. Traveling-salesman prob-
network and the network always converges to a local minidems(TSPg are mainly studied, as they are representative of
mum of the Lyapunov function. When the slope of the sig-combinatorial optimization problems. Note that symmetries
moidal output function becomes very large, the Lyapunovin a problem affect the structure of the bifurcatioisl].
function is nearly equal to the energy function, which has awithout structurally stable symmetries in a problem, one can
quadratic form of the state variables. By utilizing this fea-generically expect only saddle-node bifurcations to occur.
ture, the Hopfield network can be used for solving combina-The free energy function for a TSP has two types of symme-
torial optimization problems defined as minimizing of the tries, i.e., cyclic and reverse symmetries. Due to these sym-
quadratic energy functiof]. metries, special types of bifurcations occur. They are called
The physical meaning of the Hopfield network was fur-cyclic symmetry breaking bifurcations and reverse symmetry
ther clarified by Peterson and Anderd@4]. They showed breaking bifurcations. In TSPs, the unique minimum at high
that the Hopfield network is equivalent to the mean-fieldtemperature has such cyclic and reverse symmetries. In con-
theory (MFT) of the Boltzmann maching5]. In this sense, trast, feasible minima at low temperature, which correspond
the MFT can also be called a “deterministic Boltzmann ma-to Hamilton paths, have no symmetries. Therefore, the sym-
chine” [6]. The Lyapunov function of the Hopfield network metric minimum at high temperature bifurcates into equiva-
corresponds to the free energy function in the MFT. Thislent minima with no symmetries or is annihilated at some
implies that the Hopfield network converges to a local mini-temperature through the cyclic symmetry breaking bifurca-
mum of the free energy function in the MFT. tions and the reverse symmetry breaking bifurcations as
Wilson and Pawley7] reported that the Hopfield network shown in Fig. 1. It should be added that new minima are
is not a good algorithm for solving combinatorial optimiza- mostly generated by saddle-node bifurcations as shown in
tion problems when the problem scale becomes large. Therég. 1.
fore, neural network approaches need some additional If the annealing solution is annihilated at some tempera-
mechanisms for relatively large-scale problems. One of thenture and there are more than two distinctive minima at this
is MFT annealind8,9], i.e., the mean-field version of simu- temperature, whatever minimum is obtained by the annealing
lated annealing10]. The free energy function has a unique is not unique due to the instability at the annihilation point.
minimum at high temperature. By gradually lowering the This implies that the annealing solution in the MFT anneal-
temperature, one can get a relatively good local minimum aing is not unique in general, although the procedure is deter-
low temperature. ministic. This reminds us of the situation in chaotic dynam-
During the course of the annealing process, a sequence ffs [12].
bifurcations for minimum solutions occurs. The structure of When new minima are generated, their free energy levels
the bifurcations affects the quality of the annealing solutionare higher than that of the global minimum at that tempera-
Although MFT annealing has given relatively good results inture. However, the free energy levels of some minimum so-
computer simulation§8], there have been a few theoretical lutions may cross one another as the temperature is lowered.
studies on its bifurcation structures. Peterson andefiserg  Therefore, the MFT annealing procedure does not always
give the optimal solution. As a consequence, the annealing
solution in the MFT annealing is, in general, not a bad solu-
*Corresponding author. Electronic address: ishii@hip.atr.co.jtion and is not unique.
FAX: +81-774-95-1008. Peterson and Sierberd 9] proposed the Potts spin model
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In order to obtain the global minimum of the energy func-
tion (2.1), simulated annealingl0] can be used. However, in
many cases, simulated annealing for the energy function
(2.1) is too time consuming. Another approach is to use the
mean-field theory.

The MFT[3,6] is a mean-field-theory approximation for
the Boltzmann maching5], which is statistical mechanics
with the energy functiori2.1). In the MFT, analog variables
V,€[0,1], which represent the probability that the binary
variable S, takes the value 1, are introduced. They are as-
sumed to be independent variables. The MFT free energy
T F(V) is given by

F(V)=E(V)+TH(V), (2.2a

1
E(V)=§2 Wi ViVt > IV, (2.2

FIG. 1. Schematic figure of the MFT bifurcation processes. The

abscissa denotes the value of a state variable, and the ordinate de-

notes the temperature. The unique symmetric minimum at high tem- H(V)= E [ValnVy+(1=Vp)In(1—=V,)+In2],

perature bifurcates into equivalent minima without cyclic symmetry (2.20

through a cyclic symmetry breaking bifurcation B&T,, and is

annihilated through a reverse symmetry breaking bifurcation awhereT and (—H) correspond to the temperature and en-

T=Ts. Besides them, new minima are generated by saddle-nodgopy, respectively. In the followingH is called entropy

bifurcations afT=T, andT=T,. function. The term In2 ir(2.209 is added to leH (V) satisfy
H(V)=0. Then the free energy decreases as the temperature

for TSPs and showed that the performance of the Potts spidecreases. This MFT free energy function is identical to the

model with the annealing is comparable with the simulated_yapunov function of the analog Hopfield modél. Statis-

annealing and some other conventional algorithms even faical equilibrium corresponds to a minimum of the MFT free

large-scale problemgl3]. The bifurcation structure of the energy functior= (2.2), where the following stationary con-

Potts spin model will be shown in this paper to be almost thalition is satisfied:

same as that of the MFT.

This paper is organized as follows. In Sec. Il, the mean-

field theory is explained briefly. This section is a summary of DnF=dF/dVy= le WhmVim+Jn+TIN[V,/(1-V,)]=0.

known results. The following sections are our main results. - 2.3

In Sec. lll, bifurcations in a problem without symmetry are

studied. In Sec. IV, symmetries in TSPs are studied. In Seantroducing new variabled, by U,=TIn[V,/(1—V,)], the

V, local bifurcations in a problem with cyclic and reverse stationary condition(2.3) can be rewritten as

symmetries are described. A typical example of the bifurca-

tion diagram in the MFT annealing is shown; this example

shows the nonoptimality and nonuniqueness of the annealing Up=— 2 WorVin—Jn, (2.43

N

N

solution. In Sec. VI, the Potts spin model is studied. In Sec. m=1
VII, the practical implications of our results are discussed. V,=G(Uy)=1A1+e Yn/T), (2.4
Il. MEAN-FIELD THEORY The solution of this MFT equatiof3] can be obtained by

o using the analog Hopfield modEd]:
Many NP-complete optimization problems can be de-

scribed as a quadratic energy minimization problem for bi-

nary variablesS,(=0 or 1): TUn(1)==DpF=—Up() = X WynVi()=Jy,  (2.53
1 N V(1) =G(Uy(1)). (2.50
E9=5 2 WurSSnt 2 1S 21

At the high temperature limitT{—), the free energy
(2.29 is dominated by the entropy ternTH) and there is a
(NP refers to a category of problems that are believed to be&nique minimum as will be proved in a later section. At the
insoluble by algorithms whose runtime grows as a polynodow temperature limit T—0), on the other hand, the free
mial in the size of the problem. energy functionF (2.29 is nearly equal to the energy func-

In this formulation, constraints are treated as soft contion E (2.2b. The minima of the energy functiof2.2b in
straints, namely, the energy functid2.l) includes cost the hypercube regiorM,[0,1]) coincide with those of the
terms for constraint violations. The values of parameter&nergy function(2.1) for binary variables, if we assume the
W, andJ,, are determined for each problem. condition
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W,,=0 (n=1,...N). (2.6) 1 N
FI(VT)=F(V*To+5 > MpméVadVm
Therefore, at the low temperature limit, the local minima of n,m=1
the free energy functiorf2.2) correspond to those of the 1 N 1 N
energy function(2.1). If the temperature is fixed at a low +— > a[1],oVi+ — > a[2],6Vi+ -
value, whatever local minima are found by usi(®5 are 3=t 4! n=1
completely dependent on the initial condition. N 1 N
~ In order to get a good local minimum of the energy func- +e> b[1],6Vet e > b[2],0V2+ -,
tion E (2.1), the MFT annealing8] can be used. First, the n=1 2 =1
MFT equation (2.3 is solved at high temperature and a (3.33
unigue solution is obtained. Then after slightly lowering the '
temperature, the MFT equati@@.3) is solved again starting \here
from the higher temperature solution. By continuing this pro-
cess, one can get a low temperature solution that corresponds M, =D ,D,F =W+ SamT/[VE(1-VH)], (3.3
to a local minimum of the energy functid@.1).

There are a couple of questions to this procedure. Is tha[l]n=DﬁF,a[Z]n=DﬁF,b[l]n=DTDnF, and b[2],
annealing solution unique? Does the annealing solution cor=p . D2F. The notationD{F=JF/JT is also used. The de-

respond to the global minimum of the energy functi@r)?  t5jled expressions are given in the Appendix. The stationary
In the following, we will study these questions. condition (2.3) becomes

I1l. BIFURCATIONS IN THE MFT ANNEALING N 5 3
0= 2, MynéVpt(a[1],/2)6V2+ (a[2],/6)6V3i+ - - -
A. Free energy function m=1
It is straightforward to show that the curvature matrix of +eb[1],+€b[2],6V,+---. (3.9
the entropy functiorH is positive definite for 8=V,<1:

(DDH) =4- 1+ (positive semidefinite matrix (3.1) B. Saddle-node bifurcation

) o ) ) _ The bifurcation structure depends on the symmetry of the
where a matrix notation is used afds the identity matrix.  proplem. In this section, we consider a case where there are
The curvature matrix of the free energy function is given bypq symmetries. A problem with symmetries will be consid-

ered in the later sections. If there are no symmetries, one can
(DDF)=W+T(DDH). (3.2 generically expect that the curvature mathik of the free
o ] energy(3.3b will have a simple zero eigenvalue at the bi-
Let £min denote the minimum eigenvalue of the energy cur-yrcation point. Letv=[v,] be the eigenvector for the zero
vature matrixW. &min is negative if condition(2.6) is satis-  gjgenvalue. In this case, there are three types of bifurcations,

fied. When temperatur® is greater than-&n,n/4, the cur-  namely, saddle-node-type, transcritical-type, and pitchfork-
vature of the free energy functia.2) is positive definite.  yne pifurcationd12].

This implies that the free energy function is convex and there”  according to the bifurcation theorjl2], the necessary

is a unique minimum of the free energy. At the low tempera-conditions for these bifurcations are as follows. If the condi-
ture limit, the free energy has a lot of local minima. There-jons

fore, at some critical temperatuiig(< — &,i/4), a bifurca-

tion of the minimum solution, which corresponds to the N N

phase transition in statistical mechanics, occurs. (DD F)=2 vn(DoH)= 2, v,b[1],#0, (3.53
The gradient oH, i.e.,D,H=In[V,/(1-V,)], diverges "' -t

at the boundary\{,,=0 or 1). From the convexity dfi and N

the finiteness of the energy gradient, it can be shown that the _ 3/n3

free energy decreases toward the interior direction with am,%:‘:l om0 DaDDKF) =Te 2 vi(DH)

infinite gradient at the boundary ¥>0. This implies that N

minima of the free energy functiof2.2) are interior points _ 2 3

and never occur at the boundary. Therefore, in any local = vpa[1]n#0

analysis on minima of the free energy function, one can ne-

glect the boundary constraintv,<1. are satisfied, saddle-node bifurcations occur. If the condi-
The bifurcation of minimum solutions for the free energy tijons

functionF (2.2) is equivalent to the bifurcation of the analog

Hopfield model(2.5), whose Lyapunov function is given by N N

the MFT free energy functiof.2) [12]. > vn(DTDnF)=2 vo(DH)= > vyb[1],=0, (3.63
A minimum solutionV* at the critical temperaturg, "~*! n=1

satisfies the stationary conditid@.3). Near the bifurcation N

point (V} ,T.), the free energy2.2) can be expressed as _ 2,21 2

a Taylor series with respect toSV,=V,—V}, and nEm vr0m(DrDDnF) =2 vi(DFH) =2 vibl2],#0,

e=T-T,: (3.6b

(3.5b
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and(3.5b are satisfied, transcritical bifurcations occur. If the y
conditions T<T,
T=T.
N N
T>T.
2, vn(DtDyF)=2 va(DH)= X v,b[1],=0, (3.78 — 1
n=1 n=1 zo )
Zy 0 X
N //%
> (DDpDyDyF)=Tc2 vi(DiH) %
n,mn’,m’
a
=> via[2],#0, (3.7H
F, T>T, F. T F T<T

and (3.6) are satisfied, pitchfork bifurcations occur. How-
ever, when no structural stable symmetries exist in the prob- ™
lem, conditiong3.6g and(3.7g are broken down by a slight
change of the energy parameters, such that transcritical and
pitchfork bifurcations become saddle-node bifurcations.
Therefore, one can generically expect that only saddle-node
bifurcations occur if there are no structurally stable symme-
tries in a problem.

In order to understand how the bifurcation of the mini-
mum solution occurs, it is helpful to study the free energy
function restricted in the center subspaf&2] at the €
bifurcation point, which is a line defined by,=xv,+V;

(x;=<x=<x,), wherex, andx, are determined by the require- EIG. 2. A saddle-node bifurcation that generates a new local
ment that this line segment should lie within the hypercubeninimum. (& Two graphs,y=dH/dx, and y=7(x—xo)/T for

(V,e[0,1]). Then, the above-shown bifurcation conditions I <Tc: T=Tc, andT>T, ' are shown(b) The gra‘;]h of (JF/;]?x)f
can be rewritten in terms of this reduced free energy functioff_ T>Tc- There is only one minimum,(c) The graph o
dFIox) for T=T.. A new stationary point is generate@l) The

in the center subspace. The saddle-node conditi@:3 can graph of @F/ox) for T<T,. There are three stationary points; two

be rewritten as are minima and the other is a saddle poig}.The graphs of for
T>T,, T=T,, andT<T,. (f) The graphs of >F/9x?). At the

xz
*2

=T ‘
P YARES / ’ A\
d

g

SHERN

</
L T4
-

’ — — ’ —
DrF'(x=0)=H'(x=0)#0, (3.8 bifurcation point, i.e.T=T. andx=0, the free energy curvature is
" ” 0. (g A new minimum and an unstable saddle point are born at
F"(x=0)=T.H"(x=0)#0, (3.8b T=T, beside the existing minima as the temperature decreases.

whereF’'=gF/dx andH'=dH/dx. The above equations are N N

equivalent to the saddle-node conditions for the reduced one- _ 21w "

dimensional free energy. The conditions for the transcritical 7~ _n’mzzl anvnvm—Tcn; vnl[Va(1=V;)]>0

and pitchfork bifurcations are also equivalent to those of the

reduced free energy. Therefore, which type of bifurcation

occurs for the original free energy can be determined byholds. Since the stationary condition is satisfied at the bifur-

studying the bifurcation behavior of the reduced free energycation point,H’ (x=0)= — X,/T. also holds.

which is easily visualized. In the following, we will study  The stationary conditiofi3.9) can be solved graphically.

how the reduced free energy landscape changdswasies.  Solutions of (3.9) are intersections of the two graphs
SinceH”>0, H' is a monotonically increasing function y=H’ and y= 5(x—Xg)/T. If the saddle-node condition

and diverges at the boundaryx=£€x; or x,). Since (3.8 is satisfied,x,#0 holds. The graphsy=H’ and

H"">0,H" is a convex function and diverges at the bound-y= 7(x—x,)/T in this case are drawn in Fig(&. At the

ary, indicating thaH"’ is negative irk;<x<x3 and positive  bifurcation pointx=0, the two graphs meet tangentially.

in X3<X<X, for somex;. This implies thatH’ has a nega- From Fig. Za), one can get the graph &’ [Figs. 2b)—

tive curvature inx;<<x<X3 and has a positive curvature in 2(d)]. Then, the graphs of [Fig. 2(e)] andF” [Fig. 2f)]

X3<X<X,. Therefore, the shape &f' has a tan-like shape follow. It can be seen that there is no stationary solution near

as shown in Fig. @&). the bifurcation point fofT>T, and a stable and an unstable
The stationary conditiofi2.3) along this line is given by  stationary point appear foF<T.. This implies that a new

minimum and an unstable saddle point are borir atT,
H'=—E"/T=n(X=Xo)/T, (3.9  besides the existing minima as the temperature decreases as
shown in Fig. 2g). At the birth of the new minimum, this

where  Xo=— (2 mWantnVin+ Zndnvn)/ (Zn mWanmt nt m) minimum has a higher free energy than that of the global

and n=—-2, \Whwnwm. Sincev is the eigenvector corre- minimum at the critical temperatufg,. The graph of=” in

sponding to the zero eigenvalue Mf (3.3b at the bifurca- Fig. 2(f) shows that the conditioR”’(x=0)+#0, (3.8b), is

tion point (V3 ,T.), satisfied.
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salesman problem having a cyclic symmetry and a reverse

Y symmetry. An energy function for the TSP is given by
N N
T<T. 1 0 9
- E(V)=5 2 Wa,n;b,mVa,an,m+ E Ja,nva,n+E0
| — T=T. 2 a,b,nm=1 a,n=1
T T>T, \
/ ! y
0 A7 =3 DabVan(Vp (n+1)* Vb (n-1))
T 0 2 X a,b,n=1
( A 2 2
a +EE(EVan_1 +2 Eva,n_l)
a n n a
F, T>T, F T=T, F T<T,
/ ‘ / ‘ ‘ / +22 Va,n(l_va,n)}y (4-1)
x T T a,n
z N |2 = N |z. = *2
whereNg is the number of citiesy, , represents the prob-
b c d

ability that the salesman visits city at the nth visit, and

T D, denotes the distance between cityand city b. This
energy function is invariant under thgth order cyclic
T, 4 transformation:

Va,n_’(-y{nz\lO]V)a,nEVa,n+m (m=1,... ,No—l),
(4.2

€

FIG. 3. A saddle-node bifurcation that annihilates a local mini-Where.f[n:\‘f]NOE.ﬁn’:‘O] andVa,n+NOEVavn. The energy func-

mum and a saddle point(@) Two graphs, y=dH/dx, and PSR ; : _

Y= p(X—xg)/T for T<T,. T=T,, andT=T., are shown(b) The qufgigsnglso invariant under theth order reverse transfor

graph of @F/dx) for T>T.. There are three stationary points; two ’

are minima and the other is a saddle poi®) The graph of AN _ .

(dF/ax) for T=T,. The minima and the s:ddle point golli%e with Va!”ﬁ('ﬂEn O]V)a'”zvavm‘” (m=0.1,...No=1),

each other(d) The graph of §F/dx) for T<T.. There is only one (4.3

minimum. (¢) A minimum and a saddle point collide with each INol Nl

other afT =T, beside the existing minima and are annihilated as theVhere 7,2 No=m - The entropy and the free energy

temperature decreases. functions are also invariant under these transformations. The

cyclic permutation symmetry corresponds to the fact that the

There is another case whose figure is drawn in Fig. 3. Iriour length does not depend on the starting city. The reverse

this case, a minimum disappears together with an unstablymmetry corresponds to the fact that the tour length does

saddle point alf=T. as the temperature decreases. If thenot change when the tour direction is reversed.

saddle-node conditiofB.8) is satisfied, the stationary condi- There is a symmetric stationary solutidf of the free

tion (3.4) can be solved as a power series with respect t@nergy function for anyl':

€'2. The leading order term can be calculated as

OVo=*v,V— €k, (3.10

_ 3 ol (y— This can be proved as follows. The stationary condition for

x=22v,b[ 1]n/(Xvpal1]) = 2H'(x=0)/ the symmetric solution can be derived from the reduced free
energy function for the symmetric solution, which is given

Vi,=Va (a,n=1,...Np). (4.4)

where
[T.H"(x=0)]. This leading order of the stationary solution

coincides with that of the reduced free energy. Therefore
stabilities of the stationary solutions are determined by thosgy

for the reduced one dimensional free energy drawn in Figs. 2 N A
and 3. If k>0, there is no solution foe>0(T>T.) and Fo/No= > DabVaVb+§ No> (Va— 1/Ng)2
there is a pair of solutions foe<0(T<T.). This corre- ab=1 a

sponds to Fig. 2, where a new minimum is bornTasle-

creases. Ifk<0, there is no solution foe<0(T<T,) and +

there is a pair of solutions foe>0(T>T.). This corre-

sponds to Fig. 3, where a minimum disappearsTade-

creases. +T, [VaInVa+ (1—-Va)In(1—V,y)]. (4.5
a

2

> V-1
a

+2 va<1—va)}

IV. TSP AND SYMMETRIES
Since this reduced free energy function has at least one mini-

mum point for anyT, the original free energy function also
The bifurcation structure is affected by the symmetry ofhas a symmetric stationary solution for aifly Since the
the probleni11]. In the following, we consider the traveling- original free energy function has a uniqgue minimum at the

A. Cyclic and reverse symmetries in TSP
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high temperature limit, the unique minimum must be thisThen, eigenvectors of the curvature matixare also eigen-
symmetric solutior(4.4). Below the critical temperature, this vectors of theNth order cyclic transformatio[r?fn']\‘]_ The
symmetry breaks down to partially symmetric solutions oreigenmodes of this matrix are characterized byNiie roots
nonsymmetric solutions. of 1:
If Ng is decomposed as a product of two integdssand
N, i.e., Ng=N;N, a solutionV having theNth order cyclic a(k)=exp27ki/N), a(k)N=1,
symmetry, _
el a (K)=ak) '=a(-k), kely, (4.12
*  _ ( AN\ /* — ( gtNoly /% *
Van=(Zm V5 an=(on Y an=Vantmn, where T'y={0,+1,...,+(N/2—1),N/2} for evenN, and
'y={0,=1,...,=(N-1)/2} for oddN. The eigenvector of

(@=1,... Noin=1,... Nyym=1,... N=1), (48  \"" <sociated withy(k) can be written as

may appear. This solution may or may not have M _
ord)ér rZI\O/erse symmetry g g Uai+(n-1n,(K)=04i(K) - a(k)"
N = = ‘nN=
_(ng[N]v*) an= (jEn,\(l)]+m V*)an_vzmo+le N (a. 1,...,No,| 1,...,N1,n 1,...,N), (413

which is also an eigenvector of tiNth order cyclic transfor-
(a,n=1,...Ng;m=0,1,...N=1) 47  mation:

for a specificmy (1=<mg=<N,) called a reflection point in- ;ﬁnﬁ]u(k):a(k)mu(k). (4.14
dex. If there is a minimum solution with théth order cyclic
and reverse symmetries, there mustNbeequivalent mini- The reduced Nj,N;)-dimensional eigenequation for
mum solutions due to the invariance of the free energy funcp 4 (k) is written as
tion under theNoth order cyclic and reverse transformations.
They are related with each other by thigth order cyclic o N
transformation:Va,n—>va,n+m (a,n=1,... No:m=1,..., bz 2 a,i;b,j(K)vp j(K)=A(K)v4,i(k)
—1). Each solution has a different reflection point index
mO (1=mg=N,) for the reverse symmetri4.7). If they do (a=1,...Noii=1,...N;), (4.153
not have the reverse symmetry, there must Ng 8quivalent
minimum solutions. They are related with each other by the N
Njth order cyclic transformatiort4.7) and theN,th order Qa’i;b'j(k)zz Maiibj+ (n-nong (k)"
reverse transformation:V, ,—Vam—n (a,n=1,... Ng; n=1
m=0,... N;—1). .

If one expands the free energy function around a mini- (ab=1,... No;i,j=1,... Ny). (4.150
mum solutionV* with the Nth order cyclic symmetry(4.6),
with respect tosV, =V, ,— V3 . the free energy function
F(V* + 48V) is invariant under th&lth order cyclic transfor-
mation:

SinceM is a real symmetric matrix{2(k) becomes a Her-
mite matrix: QT(k) Q(k), where 1t denotes the Hermite
conjugate, i.e. ,Qa, b,j={b,j:ai- Therefore, the eigenvalue
N(K) is real. From(4 15t) Q(k) satisfies

V- 7tNsv  (m=1,...N—1). (4.9 —
Q(k)=Q(—k), (4.19
If the solutionV* has theNth order reverse symmet(¢.7),

the free energy functioff (V* + 8V) is also invariant under Which implies thatv(k)=v(—k) and\(k)=\(~k). Then,

the Nth order reverse transformation: eigenvectors  of M, v,;(K)a(k)" and v,;(k)a(=K)",
have the same eigenvalue, so that an eigenvalue corre-
5V—>%EnN]5V (m=0,1,...N—1). (4.9 sponding to complexa(k) is doubly degenerate and an

eigenvalue corresponding to real(k) (=1 or —1) is
. _ simple. Let {v,;(r,k)[r=0,1,... ,NogN;—1;kel'y} and
B. Eigenmodes for the curvature matrix INFK)[r=0,1, ... NoN;—1:ke Ty} be the complete set
As in the previous section, the curvature matvixof the  of the eigenvectors and the eigenvalues(4fl5, respec-
free energy function at the bifurcation point is given by tively. Let us define the eigenmode coordinatg by

Ma,n;b,mE(Da,nDb,mF)(V*1Tc) E NO§_1 ]
Nait(n—-mN, = Z W[vai(r,kK)a(k
ayn;bym+ 5ab5anc/[V;'n(l_V;’n)] a,i+(n l)Nl kEFN ) r,k[ a,|( ) ( ) ]
(a,b,n,m=1,... Ng). (4.10 (a=1,... NgNy;n=1,... N). (4.1

Because of the invariance under théh order cyclic trans- In terms of the eigenmode coordinatg,, the Nth order
formation, the curvature matrix satisfies the relation cyclic transformation(4.8) becomes

7INI— 7iN] 7N, m = _
TN . . 7Nz, ] . :
M.7tN = 7Ny (4.11) 2, — 7Nz =a(k)z, , (m=1,...N-1). (4.18
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Since 6Vai+(n-1n, iS real andv,i(r,k)=vq;(r,—k), the

following relation holds:
Zr k=2, k- (4.19

If the minimum solutionV* has theNth order reverse
symmetry(4.7), M satisfies the relation
FNIM =M. 72N, (4.20

Let us define a reverse transformation mat%(k) in the
reduced spacea(i) by

AK)aisp, ;= (a(K) 28 i 1+ @(K) Sy in, ) ab-

(4.21)
Then,.%(k) satisfies
A0k =1, ZYk=2"K). (422
From relation(4.20), it follows that
Z(K)QK) = Q(—K).Z2(K). (4.23
This implies that
ZOV(T k)= x(r k)v(r, k), (4.24

where x(r,k) is a complex number and satisfies
|x(r.k)[?=1 due to(4.22. x(r,k) is called the reverse sym-
metry index. By using.72(k), the Nth order reverse
transformation for the eigenvector of M,

Ua i+ (n—1)N, (T K)=04,(r,K)a(k)", can be written as

LA K) Ta i+ (n-1n, = @(K)LZ(K)V(T K) T jar(— k).
(4.25

From (4.24), it can be proved that

AR(r K =x(r kK ak)Mu(r,—k).  (4.26

Then, theNth order reverse transformatigd.9) for eigen-
mode coordinate, , becomes

z, j— 7Nz, = x(r K a(k) "z, .

(4.27)

It should be noted that, , =z, , and x(r,k)= *1 for a real
a(k) since Q(k)=Q(—k),v(r,k)=v(r,—k)=v(r,k) and
72(k)?=1 are satisfied for a reat(k).

V. BIFURCATIONS IN TSP
A. Saddle-node bifurcation

1. N=1 case

If the solutionV* at the bifurcation point has no symme-
try, which corresponds tbl=1, the saddle-node bifurcation
occurs, as explained in Sec. lll. In this cas®ly2quivalent

minima appear or disappear simultaneously by the saddle-

node bifurcation due to th&lyth order cyclic and reverse
transformation invariance of the free energy function.
For a solutionV* with the Nth order cyclic symmetry
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becomes a zero eigenvalue mode at the bifurcation point as
described below.

2. a(0) and no reverse symmetry case

First, let us assume that one of the eigenvectors with
the Nth order cyclic symmetry, which corresponds to
a(0)(=1), becomes a zero eigenvalue mode. Let
(r,k)=(0,0) correspond to this zero eigenvalue mode. Since
«(0) is real, this eigenvalue is simple. It is also assumed that
the solutionV* has no reverse symmetry. The zero eigen-
value coordinatezy, does not change under tidth order
cyclic transformation(4.18. Then, theNth order cyclic
transformation invariance of the free energy does not give
any special relation for the quantitieB,TDZOOF and D?OOF,

which characterize the saddle-node conditi@®b). In this

case, the saddle-node condition is generically satisfied:
No Nj

DTDZOOF(ZZO)ZNagl Zl b[1]av4i(0,0#0, (5.1a

No Nj
D;,OOF(Z:O):NZ:l 211 a[l]a,ivg,i(0,0)io, (5.1b
where  b[1],,=In(Vi/(1-Vi)] and  a[ll,,

=T (2VE,—1)/[VEi(1-VE)]% Therefore, N; equiva-
lent minima with theNth order cyclic symmetry appear or
disappear simultaneously by the saddle-node bifurcation.

3. @(0), the reverse symmetry ang=1 case

Let us consider the case that the minimum solutinat
the bifurcation point also has the reverse symmetry. If the
reverse symmetry index of the zero eigenvalue mode,
x(0,0), is +1, the zero eigenvalue coordinatg, does not
change under the reverse transformatidr2?) sincezy, is
real. Then, the reverse transformation invariance of the free
energy does not give any special relation BbeZOOF and

DfOOF, and the saddle-node bifurcation occurs. In this case,

N, equivalent minima with thé&lth order cyclic and reverse
symmetries appear or disappear simultaneously by the
saddle-node bifurcation.

B. Pitchfork bifurcation
1. «(0), the reverse symmetry angi=—1 case

If the reverse symmetry index of the zero eigenvalue
mode, x(0,0), is —1, the zero eigenvalue coordinatg, is
transformed to- zy, under the reverse transformatiGh27).
Then, the reverse transformation invariance of the free en-
ergy gives the relation

DTD F(Z:O):_DTD

F(z=0)=0, (5.29

200 Z00

D} F(z=0)=-D] F(z=0)=0. (5.2

This invariance does not give any relation IOerﬁooF and

(4.6), the bifurcation structure depends on which eigenmodeD‘z‘OOF, and
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; l ; 2. #(N/2) and no reverse symmetry case

If N is even, there is another rea(N/2)(=—1). Let us
assume that one of the modes corresponding(td/2) be-
] { : comes a zero eigenvalue mode. This zero eigenvalue is
simple. It is also assumed that the solutibh has no reverse
a b ¢ d symmetry. Let (,k)=(0,N/2) correspond to this zero eigen-
_ ) . ~value mode. The corresponding eigenvector is given by
FIG. 4. A reverse symmetry breaking bifurcation. The absciss L(ON/2)(—1)", which has [N/2)th order cyclic symme-

denotes the value of a state variable, and the ordinate denotes t . The zero eigenvalue coordinaI@N,z is transformed to

temperature. The upper side of each figure denotes high temperg: . .
ture. The solid line and dotted line denote a stable stationary point Zoniz under theNth order cyclic transformation. Thiith

(minimurm) and an unstable stationary poaddie point respec- order cyclic transformation invariance of the free energy

tively. The straight line and curved line denote a stationary pointg'ves the relation
with reverse symmetry and without reverse symmetry, respectively.

DD, F(z=0)=—-D;D, F(z=0)=0, (5.53

20N/2 Z0N/2
No Np 3 3
DTDEOOF(Z:O):NE:L 21 b[Z]a_ivg‘i(0,0)séO, (536) DZO’N/ZF(Z:O):_DZOVN/ZF(ZZO):O’ (55b)
a=1i=
as in(5.2). Therefore, the structurally stable pitchfork bifur-
Ng Nj cation occurs.
D% E(z=0)=N a[2]. v* (0,00#0 53h The stationary conditiori3.4) can be solved as a power
29 (2=0) azl Z’l [2]ava,(0.0 (-39 series with respect te'2. There is a solutio®Vs* with the

Nth order cyclic symmetry for any. Its expression is given

in the Appendix. Depending on a constak{, whose ex-
pression is also given in the Appendix, there are other solu-
tions. If A;e>0, there is a pair of solutions:

are satisfied generically. The conditiof&2) and (5.3) are
nothing but the pitchfork condition$3.6) and (3.7). There-
fore, the pitchfork bifurcation occurs. The relati¢s.2) is
structurally stable, since the reverse transformation invari- +

ance guarantees the relation even if the energy parameters” “ai+(n-1N;
are slightly changed.

The stationary Cond|t|0m34) can be solved as a power This pair of solutions does not eXiStAf1€<0. ACCOfding to
series with respect te'/2. There is a solutiosV® with the ~ consideration on th&lth order cyclic transformation invari-
Nth order cyclic and reverse symmetries for ahylts ex- ~ ance, it can be proved that =0 for k#0N/2. Then, the
pression is given in the Appendix. Depending on a constanair of solutionséV= has (N/2)th order cyclic symmetry:
Ay, whose expression is also given in the Appendix, there .
are other solutions. 1A e>0, there is a pair of solutions: 5V;,i+(n+2m—1)N1= 5V§,i+(n—1>Nl

=+ \Ajev,;(ON/2)(—1)"+0O(e). (5.6)

+

ai+(n-1N, = = Apev,(0,00+0(e). (5.9 (a=1,...,No;|=l,...,Nl;nzl,...,N;mzl,...,N/2—(15L.)7.)

This pair of solutions does not exist ¥,e<0. The pair of The solutions of the pair are related to each other by the

. . ,-,[N] + _ —
solutions has theNth order cyclic symmetry but does not S&€cond order cyclic transformation, "6V "= 46V ™. There
have the reverse symmetry. They are related with each oth&'€ four types of bifurcation diagraniig. 4). In Fig. 4a), a
by the reverse transformatio N6V =sv~. There are MiniMum with Nth order cyclic symmetry foff>T be-
four types of bifurcation diagram&ig. 4). There is no sym- Cﬁgesha sc?ddle pl_omt foF<T; and a pa|:caof ¢|n|r|naFv_V|th
metry breaking ofNth order cyclic symmetry, i.e., all the (N/2)t order cyclic Sy”?me”y appears J0r I¢. In Fig.
solutions haveNth order cyclic symmetry. On the other A(b), a pair Qf minima with N/2)th order cyclic syr_nmet_ry
hand, the symmetry breaking of the reverse symmetry occuf’ 1> Tc disappears al=T,, and a saddle point with
in this case. In Fig. @), a minimum with the reverse sym- Nf[h order cyclic Symme”y folf >T. becomes a minimum
metry forT>T, becomes a saddle point fo< T, and a pair  With Nth order cyclic symmetry fof <T.. In Fig. 4c), a
of minima without reverse symmetry appears 16£T,. In saddle pomt_vx(ltH\lth °Fder cyclic symme_try folf >Te be-
Fig. 4(b), a pair of minima without reverse symmetry for comes a minimum W'thNt,h order cycl|c. symmetry for
T>T, disappears af=T., and a saddle point with reverse | < lc- There is also a pair of saddle points with/g)th
symmetry forT>T, becomes a minimum with the reverse Order cyclic symmetry fof <T. In Fig. 4(d), a minimum
symmetry forT<T,. In Fig. 4c), a saddle point with re- W|t_h Nth order cyclic symmetry foTI'>_TC becomes a_saddl_e
verse symmetry fol > T, becomes a minimum with reverse point for T<T,. T.here is also a pair of saddle points with
symmetry forT<T,. There is also a pair of saddle points (N/2)th order cyclic symmetry for>T,.
without reverse symmetry fof <T.. In Fig. 4d), a mini-
mum with reverse symmetry fof >T, becomes a saddle
point forT<T,. There is also a pair of saddle points without = The presence of reverse symmetry does not change the
reverse symmetry fof>T,. above bifurcation diagram. The symmetry breaking of re-

3. @(N/2) and the reverse symmetry case
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verse symmetry does not occur even if the reverse symmetrgomes a zero eigenvalue mode. This eigenvalue is doubly
index of the zero eigenvalue mode-isl. The pair of solu- degenerate. In this subsection, we assume that there is no

tions 6V* has reverse symmetry: common divisor forK andN. In order to simplify the dis-
NI . cussion, let us first consider a specific case, i.e.,
HyiomOV =0V if x(ON/2)=—-1,  (5.88 N;=1N=5K=1 and the suffia is neglected since it is not

N] e L relevant to the symmetry properties. The indexs also
TgmONV==6V~= if x(ON/2)=1 (m=0,1,... N/2—1), omitted. In this case, the solutiof* has reverse symmetry
(5.8b and reverse symmetry indices of all the eigenmodes are

which is (N/2)th order reverse symmetry. +1. A more general case will be discussed later.

C. Symmetry breaking of cyclic symmetry 1. N=5.(1), the reverse symmetry angl=1 case

Next, we consider the case in which one of the modes The free energy functiof (V* + 6V, T.+¢€) in terms of
corresponding to a complex(K)(KeI'y,K#0N/2) be- the eigencoordinatéz,|k=0,+1,+2} is given by

F(V* 4+ 6V, T+ €)/5=N(0)Z5/2+ \(2) 22, + eb[ 12+ (€b[ 2]/2)[ 25+ 2(2121,+ 252,) ] + (8] 11/6)[ 23+ 6 20(Z121 + 292,)

+3(Z52,+ 222+ 2125+ 2,25) |+ (A[ 21128){ 23+ 1223(2121 + Zp2,) + 1220(2, 25+ 2,25+ 2125+ 21 25)

+6[(2121) 2+ (2922) 2+ 4(2420) (2222) |+ M B2, + T2, + 2123+ 21 23) } + - - (5.9
|
Because of the invariance under tN¢=>5)th order cyclic F(zy)=(d;€/2)(Z121) + (d,14)(Z12;)?
transformation(4.18 and theN(=5)th order reverse trans-
formation (4.27, only the invariant combinations under +(da/5)(z3+23) + - - (5.11

(4.18 and (4.27) appear in(5.9). ) . )

The solution of the stationary conditionF/dz,=0, can  Where the expressions of constadts are given in the Ap-
in (5.9 the leading orders foz, arez2 and ez, those for ~ center manifold 12] defined bydF/dz,=0 for k=0,2. The
2, are e(z12)),20(z12y), and @;2;)2, and those forz, are  effective free energy functiof(z,) is a funcugn _ogf the el-
(2325) and @22+ 2,22). This implies that the leading orders €mentary invariant combinationsz,¢;) and (z; +2y), [11]
of the stationary solution arg,~ e, (z;z,) ~ ¢, and 22~z§ . because of the invariance under the fifth order cyclic and
Then the nonzero eigenvalue modgsindz, are an order of reverse trgtn‘sformations. The Igading order tern(sz,%zl)
e. On the other hand, the zero eigenvalue magds an and (z,z;) in (5.1, are invariant under the continuous
order of 2. The nonzero eigenvalue modesandz, can transformationz, —e'’z;(0< §<2m). Therefore, the lead-
be expanded ag=37_,2(k=0,2), wherez® is anzorder ing order solution is continuously degenerate. However, the
of €2, By assuming Sthézl is an order o2 the stationary higher order term#;+23), which is not invariant under this

conifons forzo and 7 can b sohved siccessiey. and S 7L FSOTTALen ot Inerartundend, beme
z(k=0,2) can be expressed in termszf 9 y: P

(v.¢) by
_ _ = el ® > <
2o=C@le+ CA(Z121) + CiMe(Z12:) + CEl(Z121)? a=ye’ y=0, 0=¢<om (.12

+CE)?{(21+21)+ . (5.103 Then, the free energ§p.11) can be written as

F(y,¢)=(d1/2)ey?+ (d,/4) y*+ (2d3/5) y°cos5p+ - - - .
(5.13

(5 10D The shape of the effective free enei@yl3 is shown in Fig.
5. The stationary conditions are given by

2,=CRAZi+ CRZi+ eCY 23+ CY) 22 (212 + - -

whereC®)’s are coefficients of orde¢¥?, which can be de- 0=3F/9y=(dye+dyy2+2d57y3cos5p+ - - - ),
termined by comparing the terms of ordes¥® in (5.143
dF/9z,=0. Because of the invariance under the fifth order

cyclic transformation and the fifth order reverse transforma- 0=09F/d¢p=—2d3y°sin5p+ - - -. (5.14h

tion, each term on the right hand side(6f10 has the same

transformation property as the left hand side. SubstitutingEquation(5.14) has a solution:

(5.10 into (5.9), one can get the effective free energy for the

zero eigenvalue moda;: v=0 (5.15
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FIG. 5. The shape of the effective free energy,
Eq. (5.13, on a two-dimensional subspace com-
posed by two eigenvectors that correspond to the
zero eigenvalue mode. Five minima without cy-
clic symmetry, five saddle points without cyclic
symmetry, and a saddle point with cyclic symme-
try can be observed. Stationary points without cy-
clic symmetry are located on the circle whose
diameter isy.

1

for any €, which has the fifth order cyclic and reverse sym- 7517800 3]= 4(1)mz8[ J]=2&[J+m] (mod 5),
metries since it has only a symmetric componegt If (5.21a
(ed,/d,) <0, there is another set of solutions:

y=+(—d;/d,)e+O(e), (5.163

¢=jml5 (j=0,1,...,9. (5.16hH

2O 3] = (1)L J]
=289Im-J(m-J-1)] (mod 5.

(5.21b

The stability of these solutions is determined by the curva- _ _ )
These solutions are related by the fifth order cyclic transfor-

ture matrix: ) 5 _ d
mations7t>! and have no cyclic symmetry. Frofb.21), it is
9*Fldy?*=d e+ 3d,y?+8d3y°cos5p+ - - -, (5.179  proved that they have the first order reverse symmetry:
9?Fl3¢p?= —10d3y°COSEp+ - - -, (5.17b Ay 25O 131= 25931 for m[J]=2J(23+1) (mod 5.
(5.22
*Fldydp=—10d3y*sin5p+ - - -. (5.179

Therefore, the cyclic symmetry is broken by this bifurcation
The curvature matrix of the symmetric solutigh.15 be-  while the reverse symmetry is preserved.
comes Four types of bifurcation diagrams are illustrated in Fig.
) ) 6. In Fig. 6a), a minimum with the fifth order cyclic sym-
d°Floy"=de. (5.18  metry for T>T, becomes a saddle point with the fifth order
cyclic symmetry forT<T.. Five minima appear together

The symmetric solution is stable fdie>0, and unstable for with five saddle points fof <T.. These new minima are not

d;e<0. The curvature matrix for the set of solutiofs16
becomes

P*Flay?=—2de+0O(€%?), (5.193
?Flagp?=—10d4[ — (d, /dy) e]>’cogj7) + O(€%), (5.19H
9*Fldydp=0. (5.199

The stability with respect t@ depends on the sign af;.
The curvature §°F/d¢$?) becomes positive fof even(odd)
if d3<<0(>0). The stability with respect te is opposite to

c d

that of the symmetric solution. The curvatu@k/dy?) be-
comes positive fod; e<0, and negative fod;e>0. Let us FIG. 6. A cyclic symmetry breaking bifurcation. The abscissa
denotej even(odd) solutions by denotes the value of a state variable, and the ordinate denotes the
R — temperature. The upper side of each figure denotes high tempera-
zi[J]=ve ) (5.209 ture. The solid line and dotted line denote a stable stationary point

. ) (minimum) and an unstable stationary poiisaddle point respec-
Z[J]=ye2mD+0a) (3=0,1,...,4, (5.200 tively. The straight line and curved line denote a stationary point
with the N-th order cyclic symmetry, and a stationary point with the
wherey is given by(5.168. Under the fifth order cyclic and Q-th order cyclic symmetry, respectively, wheke=R- Q. In this
reverse transformations, they are transformed as figure, N=5 andQ=1.
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symmetric with respect to the cyclic symmetry. In Figh 23, [J]= ye 2N Hli(m=doNI - (3=0,1,... N—1),
five minima without the cyclic symmetry fof >T disap- ’ (5.25hH
pear together with five saddle points without the cyclic sym-
metry atT=T.. A saddle point with the fifth order cyclic wherey is given by(5.163 andd3:|d3|ei¢0. The stabilities
symmetry forT>T. becomes a minimum with the fifth order of these solutions are the same as in ke5 case. Under
cyclic symmetry forT<T,. In Fig. 6c), a saddle point with  the Nth order cyclic transformation, they are transformed as
fifth order cyclic symmetry fofT>T. becomes a minimum
with fifth order cyclic symmetry folT<T.. There are ten _’{N]Ze(())[J] a K)mZOK [J]= ze(o)[JerK] (mod N).
saddle points without cyclic symmetry far<T.. In Fig. (5.26
6(d), a minimum with the fifth order cyclic symmetry for
T>T. becomes a saddle point with the fifth order cyclic They are transformed to each other by tti#h order cyclic
symmetry forT<T.. There are ten saddle points without transformations7t\! and have no cyclic symmetry. Then,
cyclic symmetry forT>T.. All of the solutions have the there are four types of bifurcation diagrams as shown in Fig.
reverse symmetry. 6 like in the case ofN=5. The only difference is that
N=5 is replaced by an arbitraff. For example, the bifur-
cation diagram in Fig. @ corresponds to the situation in
Almost the same argument can be made for a general cag¢hich a minimum with theNth order cyclic symmetry for
with arbitrary Ng and N, whereNg=N;N. First, let us as- T>T. becomes a saddle point with tiéth order cyclic
sume there is no reverse symmetry; i.e., the minimum at theymmetry forT<<T.. N minima without the cyclic symme-
bifurcation point has no reverse symmetry. Let,k try appear together withN saddle points without the cyclic
=(0,K) be the zero eigenvalue mode. The stationary solusymmetry forT<<T.. These solutions have no reverse sym-
tion can also be calculated as a power series with respect taetry.
€'2. Consideration on the order afindicates that the zero
eigenvalue modezyy is an order ofe? the symmetric 3. a(K), the reverse symmetry case

modesz,  are an order o€, and all other modes are an order  Now, we consider the effect of the reverse symmetry. Let
of e or higher.(There is an exception, i.e&\=3. In this case, 5 assume that the minimum solution at the bifurcation point
the zero eigenvalue modeyk is an order ofe, since pas the reverse symmetry. In this case, the elementary invari-
2o + 2ok becomes a leading order term in the free en@rgy. ant combinations under the reverse transformaio®?) are

The stationary conditiond), F=0 for (r,k)#(0K), can ZokZox and ZOK+X(0 K)NZY zZyy, since |x(0, K)|?=1. The

be solved in terms of andzOK, which is assumed to be an effective free energy functlorIF(zo k) is the same as in
order of €¥2. Due to the invariance under thé-th order (5 24) except that Q3ZOK+d3ZOK) is replaced by
cyclic transformation4.18), z, , can be expressed as [ZOK+X(O K) ZOK] There is a symmetric solution:

_ Zox=0 for anye. If (ed;/d;)<O0, there is another set of
2,0=Ci% 16+ Ci% AZoxzox) +O(€%), (5238 golutions

2. a(K) and no reverse symmetry case

2, k=C\% 120 +O() (r#0),  (5.23b 28 [J]= yeli2mIN) +(vi2) (5.273

Zr,k_C<|l) Ih +O(El+|1/2) or C('z)_"z +O(61+|2/2)

r k120K r k120K 2 [J] = yeZmIN N +vi2) (3=0,1, ... N-1),

(5.230 (5.27b

where |; is the minimum integer that satisfie§K
=k(mod N), andl, is the minimum integer that satisfies

_|1| 2K=k(mod N). The leading order term is given by transformation properties under tNe¢h order cyclic transfor-
(ZOK) if 11<I5(I1=1,). Substituting(5.23 into the free  mation are the same as {8.26. The solutions(5.27) are
energy function, one can obtain the effective free energy fofransformed to each other by tiéth order cyclic transfor-
the zero eigenvalue modgy : mation.7tN and have no cyclic symmetry. Under thih
— — order reverse transformation, they are transformed as
F(zox) = (d1/2) e(ZoxZox) + (d2/4) (ZoxZox)*+ - - -

+ (LN (dgZl + daZi) + - - (5.24 Zazg[31= x(0K) a(K)"Z5 [ I]

Because of the invariance under tNéh order cyclic trans- =75 [MK=J(mK—J—1)] (modN).
formation (4.18), the effective free energy functiof(zy) (5.28

is a function ofzokzok , Zok , @andzyy , if there is no reverse

symmetry. The stationary solution 6)‘ F=0 can be ob- From (5.28), it is proved that they have first order reverse
tained by using the same argument as in Me5 case. Symmetry:

There is a symmetric solution for any: z,c=0. If

(ed,/d,)<0, there is another set of solutions: T [J]Zg(f)[J]ZZSfQ)[J]

wherey is given by(5.163 andy(0,K)=€'”. The stabilities
of these solutions are the same as in khe5 case. Their

2o k[ J]= (12N~ (190 /N), (5.253 for m[J]JK=23(2J+1) (modN). (5.29
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Therefore, the reverse symmetry is not broken in this case. (3) The effect of reverse symmetry is the same as in Sec.
The bifurcation diagrams are the same as those without ré/ C, if the role of N and K is replaced byR and P in
verse symmetry except that all the solutions have revers.27)—(5.29, respectively. Reverse symmetry is not broken.

symmetry. The bifurcation diagrams are the same as those without re-
verse symmetry except that all the solutions have reverse
D. Partial symmetry breaking of cyclic symmetry symmetry.

In Sec. V C, it is assumed that there is no common divisor
for K andN. In the following, it is assumed that the greatest E. Summary

common measure oN and K is Q(>1). Let us define The previous arguments can be summarized as follows.
R=N/Q andP=K/Q. Then,NP=KR is satisfied and there 1o MFT free energy for a TSP with, cities is invariant
is no common divisor folP and R. Main _dlfferences from  nder theNoth order cyclic transformatiori4.2) and the
the argument in Sec. V C are the following. reverse transformation (4.3. At high temperature
(1) Under theNth order cyclic transfprm?t|cz'(_4.18_), (T>— &min/d), there is a unique minimum of the free energy.
Zrk 1S transformled agnk%‘ﬁ(k)nlzrr,k' while z5, (o) IS This unique minimum hadlyth order cyclic symmetry and
transformed aszy— a(k)™'zpx [Zox— (k) ™Zok]. The  reverse symmetry. In the MFT annealing process, one wil
transformation factors are written agk)™=e'2"(M¥'N and  follow this minimum solution to a sufficiently low tempera-
a(K)M=g!2mmIN [4(K) M= 127(MIK/N] In order that  ture by gradual lowering of the temperature. As the tempera-
ZlO,K (igK) is transformed asz ,, the condition ture decreases, bifurcations of minimum solutions occur.
k=IK(—IK)(mod N) should be satisfied. K is a multiple If Ng is decomposed ds$y= NN, minima withNth order
of Q, there is anl that satisfies this condition. K is not a  cyclic symmetry(4.6) may appear. These minima may or
multiple of Q, this condition cannot be satisfied for ahy = may not have the reverse symmetd;7). If they have re-

Therefore,(5.239 is replaced by verse symmetry, there must g equivalent minima with
0 - _ Nth order cyclic and reverse symmetries, due to hth

| CrkiZox ifk=1Q order cyclic and reverse transformation invariance. These
Zr k= 0 if k is not a multiple ofQ. (530 minima are related to each other by tNeth order cyclic

transformation. If they do not have reverse symmetry, there
Sincea(k)R=1 fork=1Q, the above solution hadth order = must be N, equivalent minima witiNth order cyclic sym-

cyclic symmetry: metry due to theNyth order cyclic and reverse transforma-
tion invariance.
.ﬁmQ]zr,k=zr,k (m=1,...0Q0-1), (5.3) There are three types of bifurcations.
(1) Saddle-node bifurcation:N; (N4) equivalent minima
where.ﬁmQ]E.ﬁn'ﬂ%. with Nth order cyclic symmetryandNth order reverse sym-

(2) Since a(K)R=1, elementary invariant combinations metry) may appear or disappear simultaneously by the
under theNth order cyclic transformatio.18 are given by  saddle-node bifurcation. In TSPs, most typicall{2(i.e.,
ZokZok s ZEK, and?sK. Then, the effective free energy N;=Ng,N=1), nonsymmetric equivalent minima appear.

function F(zpk) can be written as (2) Reverse symmetry brealing bifurcation: Reverse sym-
L . metry may break by this bifurcation; it is one type of pitch-
F(Zox) = (d1/2) €(ZoxZox) + (d2/4) (ZoxZox)*+ - - - fork bifurcation. Cyclic symmetry does not break by this

bifurcation. There are four types of bifurcation diagrams as
shown in Fig. 4. If there ardN; equivalent minima with
Nth order cyclic and reverse symmetries, each minimum
may bifurcate into a pair of minima without reverse symme-
try but with Nth order cyclic symmetryFig. 4a@)]. If there
e — a(i27dIR) (i g IR) are 2N; equivalent minima without reverse symmetry but
ZoxlJ1=7e o (5.333 with Nth order cyclic symmetryN; pairs of minima may
o (127 3IR) 4 i (= )R . _ collide at theN bifurcation points and neW; minima with
o[ 3]=ve' TRl (3=0,1,.. . R (é)é3b Nth order cyclic and reverse symmetries may apgéay.
' 4(b)]. Also, N; equivalent minima witiNth order cyclic and
where y is given by (5.163 and d;=|ds|e'%0. Under the reverse symmetries may appéBig. 4(c)] or disappeafFig.
Nth order cyclic transformation, the solutions are trans-#(d)] simultaneously.

+(LR) (d3ZR + daZi) + - - (5.32

The set of solutions witlQth order cyclic symmetry5.31) is
given by

formed as (3) Cyclic symmetry breaking bifurcation: The cyclic
symmetry may break by this bifurcation. Reverse symmetry
_ﬁng\l]zgf?[\]]:a(K)ngf£>[J]=zgf£>[J+mp] (modR). does not break by this bifurcation. There are four types of

(5.34 bifurcation diagrams as shown in Fig. 6. Let us assiNTie
further decomposed abl=RQ. If there are N; (Ny)
They are transformed to each other by/tN!  equivalent minima withNth order cyclic symmetry(and
(m=1,... R—1), sinceP andR have no common divisor. Nth order reverse symmejryeach minimum may bifurcate
The bifurcation diagrams are the same as in Sec. V C, exceptto R equivalent minima withQth order cyclic symmetry
that theN solutions in Sec. V C are replaced by tResolu-  (and Qth order reverse symmelryFig. 6a)]. If there are
tions with Qth order cyclic symmetry. 2N, (N;) equivalent sets dR minima with Qth order cyclic
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bifurcation diagram, wher&/;(i=1,...,5) for
every minimum are plotted against temperature.

o2 (b) The corresponding free energy diagram.
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symmetry(and Qth order reverse symmedry2N, (N,) sets  cedure does not necessarily give a unique minimum solution
of R minima collide at the Rl; (N;) bifurcation points and in general, even though the procedure is deterministic.
new 2N, (N;) minima with Nth order cyclic symmetryand When new minima appear, these local minima have a
Nth order reverse symmeirynay appeafFig. 6b)]. Also, higher free energy than that of the global minima at that
2N; (N;) equivalent minima wittNth order cyclic symme- temperature. However, free energy levels of local minima
try (andNth order reverse symmetrynay appeafFig. 6(c)]  may cross each other as the temperature decreases. There-
or disappeafFig. 6(d)] simultaneously. fore, the MFT annealing procedure does not guarantee the
If the annealing solution bifurcates inth; (or 2N;)  optimal solution. As a consequence, the annealing solution in

minima with Nth order cyclic symmetry, one can follow the the MFT annealing is, in general, not a solution and is not
annealing solution since these minima are equivalent to eagfhjque.

other. If the annealing solution is annihilated and there are

more than two distinctive local minima having lower free

energy values than the annihilation point at that temperature, F. Example

one may not uniquely follow the annealing solution because

of the instability at the annihilation point. Whether the an- Let us show a typical example of a bifurcation diagram.
nealing solution is unique or not depends on the basin strud=igure @) is a bifurcation diagram of a five-city TSP, where
ture of the local minima. Therefore, the MFT annealing pro-V,;(i=1,...,5) for every minimum are plotted against tem-
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perature. Figure () is the corresponding free energy dia- where the analog variablég, ,e[0,1] represent the prob-
gram. In the experiment, the parameferin (4.1) is set to  ability thatS, , takes a value 1 and satisfies the constraint:
1.5.

At high temperature, i.eT>0.52, there is a unique mini- No
mum (a). This minimum has fifth order cyclic and reverse nZl Van=1 (a=1,... No). 6.3
symmetries. AfT;~0.52, a saddle-node bifurcation occurs.
Since all new minima have neither cyclic symmetry nor re-Both the free energy functiof6.2) and the constraint6.3)
verse symmetry, ten nonsymmetric minif appear simul-  are invariant under thigth order cyclic transformatio#.2)
taneously. Since the new born minirtta are local minima,  and theNyth order reverse transformatidd.3). Therefore,
their free energy level must be higher than that of the symminima with Nth order cyclic symmetry4.6) may appear if
metric minimum(a) at the bifurcation temperature. However, No=NN;j. They may or may not havélth order reverse
the former becomes lower than the latter as the temperatuigymmetry(4.7). If they have reverse symmetry, there must
is lowered. This free energy crossing occurslat0.518 as  pe N, equivalent minima due to thidoth order cyclic trans-
seen in Fig. t). At T,~0.50, another saddle-node bifurca- formation invariance as in Sec. V. If they do not have reverse
tion occurs, and ten nonsymmetric minint@ appear. At symmetry, there must beNg, equivalent minima due to the
T3~0.48, a cyclic symmetry breaking bifurcation occurs. N th order cyclic and reverse transformation invariance.
The minimum(a) with fifth order cyclic and reverse symme-  The gradient and the curvature of the entropy function
tries bifurcates into five minimé&d) without cyclic symmetry H gare given by D, ,H=InV,,+1 and D, Dy H
but with first order reverse symmetry. Because of the reverse. 5. 5 /v, .. Since some values of, , are zero at the
symmetry, there are only three cascades observed in Figoundary, the gradient df, D, H, divefges at the bound-
7(a). At T,~0.475, a reverse symmetry breaking bifurcationary Since 1v, =1, H(V) is a convex function. Then, the
occurs, and each of the five minima with first order reversesame argument as in Sec. Il A can be made. Namely, a
symmetry(d) collides with saddle points and eventually be- minimum of the free energy functiof6.2) with the con-
comes a saddle point. After this bifurcation, the original an-straint(6.3) occurs at the interior point and one can neglect

nealing soluti_or_13 disappear. At this temperature, there exighe boundary constraint<0V, ,<1 in the local analysis of
two sets of minima(b) and(c), and the free energy levels of the minima. '

these minima are lower than that of the disappearing minima | et ys define a new coordinasg by
as shown in Fig. (b). In this case, due to the instability of ’

the disappearing bifurcation point, which minimum is found 1 .

is ambiguous, even if the procedure is deterministic. This Va,n=,\l—0k;F Yaka(K)" (a,n=1,... Ng), (6.4
example shows the nonuniqueness of the MFT annealing so- No

lution.

wherea(K) is defined by(4.12 with N=N,. SinceV, , is
real anda(k) = a(—k),
VI. MFT ANNEALING OF POTTS SPIN MODEL

A. MFT for Potts spin model Yak=Ya-k (a=1,...Nokely,) (6.9

A Potts spin mode[9,14] for a TSP is defined by an s satisfied. By using the relation
energy function:

No
N N
1 Do 0 > a(k)"=0 for k#0, kel (6.6)
E(S)= E a bnzmzl \Na,n;b,mSa,nSb,m'f_anzz1 ‘]a,nSa,n n=1 0
1 N the constrain{6.3) can be explicitly solved as
:EabE=l Dabsa,n(sb,n+l+sb,nfl) No
’ D Van=Yao=1 (a=1,...Np). 6.7
A NO No 2 B NO NO n=1
* Engl ( 2 San—1]+ Eagl n;m SanSam: Then, the problem is reduced to finding the minimum of the

free energy functior(6.2), in whichy, is fixed to 1, with
respect toy, , for k#0. The free energy is still invariant
under theNgth order cyclic transformation:

(6.2)

where Potts spin variableS, ,(=1or 0) satisfy the con- ]
straintsEEglsa,nz l(a=1,... Ng). The MFT free energy Yak—7 1y
for the Potts spin modé€b.1) is given by

Ya k= a(k)mya,k
(a,m=1,... ,No;kaﬁo,keI‘No) (6.8

1 and theNgth order reverse transformation:
FV)=EWV)+THV)=5 X WanpmVanVom

2 a,b,n,m=1 ) R
ya,k‘*%E][.\IO]ya,kE a(k) mya,k
No No
+an2:l \]a,nVa,n+T anzzl Va,nana,n- (6.2 (a=1,...Ng;m=0,... Ng—1;k# O-kEFNO)- (6.9
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Near the bifurcation point\(*,T.), which hasNth order  The stability of the symmetric solution can be found by cal-
cyclic symmetry(4.6), one can define eigenmode coordinateculating the minimal eigenvalue of the free energy curvature
z, x as in Sec. IV B by using the eigenvectors of the curva<(4.10. The eigenvalues can be obtained by solving a reduced
ture matrixDDF(V*,T.). The transformation properties of eigenequatiori4.15 whose order ifN;-Ng. Since the dis-
the eigenmode coordinatg  under Nth order cyclic and appearing temperatur'ég is lower thanTg, we can obtain
reverse transformations are the same a@ih8 and(4.27). Tg by conducting an annealing procedure starting fiBin
The analysis for the bifurcation of the minimum solution canAjternatively, Tg can be approximated just as a slightly
be done in the same way as in Sec. V. The only difference igywer temperature thafiS. V¢ can be approximated as the
that theNOth order cyclic symmetry rr_10_03ad,(J is fixed_ by thg symmetric solution at the approximaté’@.
constraint (6.7).. Therefore, the minimum solu_tlon with The above-mentioned approximation procedure needs a
Noth order cyclic symmetry cannot appear or disappear by, ,ch smaller computation time than the original MFT an-
the saddle-node bifurcation. Other types of bifurcations age5jing procedure. After we can approximate the disappear-
described in Sec. V can also occur in this model. ing point, it is sufficient to obtain the MFT solution starting
from the approximated/? at the approximated S without
VIl. DISCUSSION the annealing procedure. Furthermore, we can select the best
among many MFT solutions obtained by putting small ran-
In this paper, we investigated the MFT bifurcation pro- dom terms on the initial condition. Preliminary experiments
cesses for MFT applied to traveling-salesman problems. Dugave shown that this algorithm is faster and can achieve bet-
to the cyclic and reverse symmetries of the TSP free energier results than the MFT annealing.
function, some special bifurcations occur: cyclic symmetry
breaking bifurcations and reverse symmetry breaking bifur- ACKNOWLEDGMENT
cations. Saddle-node bifurcations also occur. If the annealing
solution disappears at some temperature, the MFT annealing We thank Masaya Yamaguti of Ryukoku University for
does not give a unigue solution, although the procedure ibis valuable comments on symmetries and bifurcations, and
deterministic. Moreover, the MFT annealing does not alwaydor introducing literatures on bifurcations to us.
give the optimal solution.
The disappearance of the annealing solution as in Fig. 7 is APPENDIX
a very typical phenomenon in TSPs. The minima generated , , ,
through saddle-node bifurcations do not disappear, in most |he constants employed i8.38 in Sec. Ill A are given
cases. Therefore, if the disappearing poiﬁi, andVd, is @S
known, the MFT annealing is nothing but a procedure that a[l]n=DﬁF=TC(D§H)=TC(2V§ —1)/[VE(1-VH]?,

obtains an MFT solution starting from® at the fixed tem- (Ala)
peratureT?.

Although there is no general way of obtainifh'd without a[2],= Dﬁp =TC(DﬁH)
an annealing procedure, we can instead obtain the first cyclic
symmetry breaking bifurcation temperatufé. When the =2T[3(V3)?—3Vy + 1]V (1-V}) T3,
unique symmetric minimunv*® disappears through a cyclic (A1b)
symmetry breaking bifurcatiorif9=TS and V¢=Vs. When
the minima, whose cyclic symmetry has been broken, disap- b[1],=D{D,F=D,H=In[V}/(1-V})], (Alc)
pear through a reverse symmetry breaking bifurcation as in
Fig. 7(a), TS is a little lower thanTg andVY is close toVs. b[2]n=DTDﬁF= DﬁHzl/[V:(l—V:,‘)]. (Ald)
The symmetric solutioW® can be obtained with the reduced
free energy(4.5), which is represented by, variables and The solutionsV® with the Nth order cyclic and reverse

converges much faster than with the original free energysymmetry, and the constanf in Sec. V B 1 are given as

No N

1
0 — 2
5V2v”<“*1)'“1__6x<r,0):1 x(r 0y a0 bzl ;1 b[1]p,up,i(r.0) | +O(€?), (A2)

_ 2 vr0=1[a[110%(0,0v(r,0)][b[ 1]v(r,0)]/\(r,0 — [b[2]v*(0,0)]

Ao (A3)

%[8[2]04(0.0)]— > [al1]v?(0,0v(r,0]%[2)(r,0)]
1

x(r,0)=

where abbreviated notatiOtﬁa[l]vz(O,O)v(r,0)]522‘212;“:1151[1]&]—0;](O,O)Ua,j(r,0), etc. are used.

The solutionsVSs! with Nth order cyclic symmetry, and the constant in Sec. V B 2 are given as
NoN;—1

No N
Naico-om="€ 2 g la 0| 2 ,21 b[1]p,jvp,j(r.0) | +O(€?), (A4)
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SN A 1102(ON/2)w (r,0)1[b[ 1]v(r,0) /A (r,0) —[b[ 2]vX(ON/2)]
A= NoN;—1 : (A5)

%[a[Z]vA'(O,N/Z)] — > [a[1]v3(ON/2)v(r,0)]4[2\(r,0)]

The constantsl’'s employed in(5.11) in Sec. V C 1 are given as

d,/5=2b[2]—2a[1]b[1]/A(0), (A6a)

dy/5=a[2]—2a?[1]/\(0)—a?[1]/N(2), (ABb)

ds/5=5a°[1]/[8\%(2)]—5a[1]a[2]/[12\(2)]+a[ 3]/24. (A6c)
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