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In this paper, we investigate bifurcation processes for the mean-field-theory~MFT! annealing applied to
traveling-salesman problems~TSPs!. Due to the symmetries of the TSP free energy function, some special
bifurcations occur: cyclic symmetry breaking bifurcations and reverse symmetry breaking bifurcations. Saddle-
node bifurcations also occur. Which type of bifurcation occurs depends on the symmetry of the eigenvector
that corresponds to the zero eigenvalue mode of the free energy curvature matrix at the bifurcation point. In the
MFT annealing process, a sequence of bifurcations occurs and the bifurcation structure affects the quality of
the annealing solution. It is shown that the annealing solution in this process is not unique in general, and it is
not always the optimal solution. Our approach can also be applied to the Potts spin model and its bifurcation
structure is almost the same as that of the MFT. The practical implications of our results are also discussed.

PACS number~s!: 87.10.1e, 05.501q

I. INTRODUCTION

In his original paper, Hopfield@1# showed that a
Lyapunov function can be defined for the analog Hopfield
network and the network always converges to a local mini-
mum of the Lyapunov function. When the slope of the sig-
moidal output function becomes very large, the Lyapunov
function is nearly equal to the energy function, which has a
quadratic form of the state variables. By utilizing this fea-
ture, the Hopfield network can be used for solving combina-
torial optimization problems defined as minimizing of the
quadratic energy function@2#.

The physical meaning of the Hopfield network was fur-
ther clarified by Peterson and Anderson@3,4#. They showed
that the Hopfield network is equivalent to the mean-field
theory ~MFT! of the Boltzmann machine@5#. In this sense,
the MFT can also be called a ‘‘deterministic Boltzmann ma-
chine’’ @6#. The Lyapunov function of the Hopfield network
corresponds to the free energy function in the MFT. This
implies that the Hopfield network converges to a local mini-
mum of the free energy function in the MFT.

Wilson and Pawley@7# reported that the Hopfield network
is not a good algorithm for solving combinatorial optimiza-
tion problems when the problem scale becomes large. There-
fore, neural network approaches need some additional
mechanisms for relatively large-scale problems. One of them
is MFT annealing@8,9#, i.e., the mean-field version of simu-
lated annealing@10#. The free energy function has a unique
minimum at high temperature. By gradually lowering the
temperature, one can get a relatively good local minimum at
low temperature.

During the course of the annealing process, a sequence of
bifurcations for minimum solutions occurs. The structure of
the bifurcations affects the quality of the annealing solution.
Although MFT annealing has given relatively good results in
computer simulations@8#, there have been a few theoretical
studies on its bifurcation structures. Peterson and So¨derberg

@9# estimated a critical temperature by using a stability analy-
sis. However, they did not study what kind of bifurcation
occurs. In this paper, we theoretically study bifurcation
structures in the MFT annealing. Traveling-salesman prob-
lems~TSPs! are mainly studied, as they are representative of
combinatorial optimization problems. Note that symmetries
in a problem affect the structure of the bifurcations@11#.
Without structurally stable symmetries in a problem, one can
generically expect only saddle-node bifurcations to occur.
The free energy function for a TSP has two types of symme-
tries, i.e., cyclic and reverse symmetries. Due to these sym-
metries, special types of bifurcations occur. They are called
cyclic symmetry breaking bifurcations and reverse symmetry
breaking bifurcations. In TSPs, the unique minimum at high
temperature has such cyclic and reverse symmetries. In con-
trast, feasible minima at low temperature, which correspond
to Hamilton paths, have no symmetries. Therefore, the sym-
metric minimum at high temperature bifurcates into equiva-
lent minima with no symmetries or is annihilated at some
temperature through the cyclic symmetry breaking bifurca-
tions and the reverse symmetry breaking bifurcations as
shown in Fig. 1. It should be added that new minima are
mostly generated by saddle-node bifurcations as shown in
Fig. 1.

If the annealing solution is annihilated at some tempera-
ture and there are more than two distinctive minima at this
temperature, whatever minimum is obtained by the annealing
is not unique due to the instability at the annihilation point.
This implies that the annealing solution in the MFT anneal-
ing is not unique in general, although the procedure is deter-
ministic. This reminds us of the situation in chaotic dynam-
ics @12#.

When new minima are generated, their free energy levels
are higher than that of the global minimum at that tempera-
ture. However, the free energy levels of some minimum so-
lutions may cross one another as the temperature is lowered.
Therefore, the MFT annealing procedure does not always
give the optimal solution. As a consequence, the annealing
solution in the MFT annealing is, in general, not a bad solu-
tion and is not unique.

Peterson and So¨derberg@9# proposed the Potts spin model
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for TSPs and showed that the performance of the Potts spin
model with the annealing is comparable with the simulated
annealing and some other conventional algorithms even for
large-scale problems@13#. The bifurcation structure of the
Potts spin model will be shown in this paper to be almost the
same as that of the MFT.

This paper is organized as follows. In Sec. II, the mean-
field theory is explained briefly. This section is a summary of
known results. The following sections are our main results.
In Sec. III, bifurcations in a problem without symmetry are
studied. In Sec. IV, symmetries in TSPs are studied. In Sec.
V, local bifurcations in a problem with cyclic and reverse
symmetries are described. A typical example of the bifurca-
tion diagram in the MFT annealing is shown; this example
shows the nonoptimality and nonuniqueness of the annealing
solution. In Sec. VI, the Potts spin model is studied. In Sec.
VII, the practical implications of our results are discussed.

II. MEAN-FIELD THEORY

Many NP-complete optimization problems can be de-
scribed as a quadratic energy minimization problem for bi-
nary variablesSn(50 or 1):

E~S!5
1

2 (
n,m51

N

WnmSnSm1 (
n51

N

JnSn . ~2.1!

(NP refers to a category of problems that are believed to be
insoluble by algorithms whose runtime grows as a polyno-
mial in the size of the problem.!

In this formulation, constraints are treated as soft con-
straints, namely, the energy function~2.1! includes cost
terms for constraint violations. The values of parameters
Wnm andJn are determined for each problem.

In order to obtain the global minimum of the energy func-
tion ~2.1!, simulated annealing@10# can be used. However, in
many cases, simulated annealing for the energy function
~2.1! is too time consuming. Another approach is to use the
mean-field theory.

The MFT @3,6# is a mean-field-theory approximation for
the Boltzmann machine@5#, which is statistical mechanics
with the energy function~2.1!. In the MFT, analog variables
VnP@0,1#, which represent the probability that the binary
variableSn takes the value 1, are introduced. They are as-
sumed to be independent variables. The MFT free energy
F(V) is given by

F~V!5E~V!1TH~V!, ~2.2a!

E~V!5
1

2( WnmVnVm1( JnVn , ~2.2b!

H~V!5( @VnlnVn1~12Vn!ln~12Vn!1 ln2#,

~2.2c!

whereT and (2H) correspond to the temperature and en-
tropy, respectively. In the following,H is called entropy
function. The term ln2 in~2.2c! is added to letH(V) satisfy
H(V)>0. Then the free energy decreases as the temperature
decreases. This MFT free energy function is identical to the
Lyapunov function of the analog Hopfield model@1#. Statis-
tical equilibrium corresponds to a minimum of the MFT free
energy functionF ~2.2!, where the following stationary con-
dition is satisfied:

DnF[]F/]Vn5 (
m51

N

WnmVm1Jn1Tln@Vn /~12Vn!#50.

~2.3!

Introducing new variablesUn byUn5Tln@Vn /(12Vn)#, the
stationary condition~2.3! can be rewritten as

Un52 (
m51

N

WnmVm2Jn , ~2.4a!

Vn5G~Un![1/~11e2Un /T!. ~2.4b!

The solution of this MFT equation@3# can be obtained by
using the analog Hopfield model@1#:

tU̇n~ t !52DnF52Un~ t !2( WnmVm~ t !2Jn , ~2.5a!

Vn~ t !5G„Un~ t !…. ~2.5b!

At the high temperature limit (T→`), the free energy
~2.2a! is dominated by the entropy term (TH) and there is a
unique minimum as will be proved in a later section. At the
low temperature limit (T→0), on the other hand, the free
energy functionF ~2.2a! is nearly equal to the energy func-
tion E ~2.2b!. The minima of the energy function~2.2b! in
the hypercube region (VnP@0,1#) coincide with those of the
energy function~2.1! for binary variables, if we assume the
condition

FIG. 1. Schematic figure of the MFT bifurcation processes. The
abscissa denotes the value of a state variable, and the ordinate de-
notes the temperature. The unique symmetric minimum at high tem-
perature bifurcates into equivalent minima without cyclic symmetry
through a cyclic symmetry breaking bifurcation atT5T1 , and is
annihilated through a reverse symmetry breaking bifurcation at
T5T3 . Besides them, new minima are generated by saddle-node
bifurcations atT5T2 andT5T4 .
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Wnn50 ~n51, . . . ,N!. ~2.6!

Therefore, at the low temperature limit, the local minima of
the free energy function~2.2! correspond to those of the
energy function~2.1!. If the temperature is fixed at a low
value, whatever local minima are found by using~2.5! are
completely dependent on the initial condition.

In order to get a good local minimum of the energy func-
tion E ~2.1!, the MFT annealing@8# can be used. First, the
MFT equation ~2.3! is solved at high temperature and a
unique solution is obtained. Then after slightly lowering the
temperature, the MFT equation~2.3! is solved again starting
from the higher temperature solution. By continuing this pro-
cess, one can get a low temperature solution that corresponds
to a local minimum of the energy function~2.1!.

There are a couple of questions to this procedure. Is the
annealing solution unique? Does the annealing solution cor-
respond to the global minimum of the energy function~2.1!?
In the following, we will study these questions.

III. BIFURCATIONS IN THE MFT ANNEALING

A. Free energy function

It is straightforward to show that the curvature matrix of
the entropy functionH is positive definite for 0<Vn<1:

~DDH !54•11~positive semidefinite matrix!, ~3.1!

where a matrix notation is used and1 is the identity matrix.
The curvature matrix of the free energy function is given by

~DDF !5W1T~DDH !. ~3.2!

Let jmin denote the minimum eigenvalue of the energy cur-
vature matrixW. jmin is negative if condition~2.6! is satis-
fied. When temperatureT is greater than2jmin/4, the cur-
vature of the free energy function~3.2! is positive definite.
This implies that the free energy function is convex and there
is a unique minimum of the free energy. At the low tempera-
ture limit, the free energy has a lot of local minima. There-
fore, at some critical temperatureTc(<2jmin/4), a bifurca-
tion of the minimum solution, which corresponds to the
phase transition in statistical mechanics, occurs.

The gradient ofH, i.e.,DnH5 ln@Vn /(12Vn)#, diverges
at the boundary (Vn50 or 1). From the convexity ofH and
the finiteness of the energy gradient, it can be shown that the
free energy decreases toward the interior direction with an
infinite gradient at the boundary ifT.0. This implies that
minima of the free energy function~2.2! are interior points
and never occur at the boundary. Therefore, in any local
analysis on minima of the free energy function, one can ne-
glect the boundary constraint 0<Vn<1.

The bifurcation of minimum solutions for the free energy
functionF ~2.2! is equivalent to the bifurcation of the analog
Hopfield model~2.5!, whose Lyapunov function is given by
the MFT free energy function~2.2! @12#.

A minimum solutionVn* at the critical temperatureTc
satisfies the stationary condition~2.3!. Near the bifurcation
point (Vn* ,Tc), the free energy~2.2! can be expressed as
a Taylor series with respect todVn5Vn2Vn* , and
e5T2Tc :

F~V,T!5F~V* ,Tc!1
1

2 (
n,m51

N

MnmdVndVm

1
1

3! (
n51

N

a@1#ndVn
31

1

4! (
n51

N

a@2#ndVn
41•••

1e (
n51

N

b@1#ndVn1
1

2
e (

n51

N

b@2#ndVn
21•••,

~3.3a!

where

Mnm5DnDmF5Wnm1dnmTc /@Vn* ~12Vn* !#, ~3.3b!

a@1#n5Dn
3F,a@2#n5Dn

4F,b@1#n5DTDnF, and b@2#n
5DTDn

2F. The notationDTF[]F/]T is also used. The de-
tailed expressions are given in the Appendix. The stationary
condition ~2.3! becomes

05 (
m51

N

MnmdVm1~a@1#n/2!dVn
21~a@2#n/6!dVn

31•••

1eb@1#n1eb@2#ndVn1•••. ~3.4!

B. Saddle-node bifurcation

The bifurcation structure depends on the symmetry of the
problem. In this section, we consider a case where there are
no symmetries. A problem with symmetries will be consid-
ered in the later sections. If there are no symmetries, one can
generically expect that the curvature matrixM of the free
energy~3.3b! will have a simple zero eigenvalue at the bi-
furcation point. Letv5@vn# be the eigenvector for the zero
eigenvalue. In this case, there are three types of bifurcations,
namely, saddle-node-type, transcritical-type, and pitchfork-
type bifurcations@12#.

According to the bifurcation theory@12#, the necessary
conditions for these bifurcations are as follows. If the condi-
tions

(
n51

N

vn~DTDnF !5( vn~DnH !5 (
n51

N

vnb@1#nÞ0, ~3.5a!

(
n,m,k51

N

vnvmvk~DnDmDkF !5Tc( vn
3~Dn

3H !

5 (
n51

N

vn
3a@1#nÞ0 ~3.5b!

are satisfied, saddle-node bifurcations occur. If the condi-
tions

(
n51

N

vn~DTDnF !5( vn~DnH !5 (
n51

N

vnb@1#n50, ~3.6a!

(
n,m

N

vnvm~DTDnDmF !5( vn
2~Dn

2H !5( vn
2b@2#nÞ0,

~3.6b!
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and~3.5b! are satisfied, transcritical bifurcations occur. If the
conditions

(
n51

N

vn~DTDnF !5( vn~DnH !5 (
n51

N

vnb@1#n50, ~3.7a!

(
n,m,n8,m8

N

~DnDmDn8Dm8F !5Tc( vn
4~Dn

4H !

5( vn
4a@2#nÞ0, ~3.7b!

and ~3.6! are satisfied, pitchfork bifurcations occur. How-
ever, when no structural stable symmetries exist in the prob-
lem, conditions~3.6a! and~3.7a! are broken down by a slight
change of the energy parameters, such that transcritical and
pitchfork bifurcations become saddle-node bifurcations.
Therefore, one can generically expect that only saddle-node
bifurcations occur if there are no structurally stable symme-
tries in a problem.

In order to understand how the bifurcation of the mini-
mum solution occurs, it is helpful to study the free energy
function restricted in the center subspace@12# at the
bifurcation point, which is a line defined byVn5xvn1Vn*
(x1<x<x2), wherex1 andx2 are determined by the require-
ment that this line segment should lie within the hypercube
(VnP@0,1#). Then, the above-shown bifurcation conditions
can be rewritten in terms of this reduced free energy function
in the center subspace. The saddle-node conditions~3.5! can
be rewritten as

DTF8~x50!5H8~x50!Þ0, ~3.8a!

F-~x50!5TcH-~x50!Þ0, ~3.8b!

whereF8[]F/]x andH8[dH/dx. The above equations are
equivalent to the saddle-node conditions for the reduced one-
dimensional free energy. The conditions for the transcritical
and pitchfork bifurcations are also equivalent to those of the
reduced free energy. Therefore, which type of bifurcation
occurs for the original free energy can be determined by
studying the bifurcation behavior of the reduced free energy,
which is easily visualized. In the following, we will study
how the reduced free energy landscape changes asT varies.

SinceH9.0, H8 is a monotonically increasing function
and diverges at the boundary (x5x1 or x2). Since
H99.0, H9 is a convex function and diverges at the bound-
ary, indicating thatH98 is negative inx1,x,x3 and positive
in x3,x,x2 for somex3 . This implies thatH8 has a nega-
tive curvature inx1,x,x3 and has a positive curvature in
x3,x,x2 . Therefore, the shape ofH8 has a tan-like shape
as shown in Fig. 2~a!.

The stationary condition~2.3! along this line is given by

H852E8/T5h~x2x0!/T, ~3.9!

where x052((n,mWnmvnVm*1(nJnvn)/((n,mWnmvnvm)
andh52(n,mWnmvnvm . Sincev is the eigenvector corre-
sponding to the zero eigenvalue ofM ~3.3b! at the bifurca-
tion point (Vn* ,Tc),

h52 (
n,m51

N

Wnmvnvm5Tc(
n51

N

vn
2/@Vn* ~12Vn* !#.0

holds. Since the stationary condition is satisfied at the bifur-
cation point,H8(x50)52hx0 /Tc also holds.

The stationary condition~3.9! can be solved graphically.
Solutions of ~3.9! are intersections of the two graphs
y5H8 and y5h(x2x0)/T. If the saddle-node condition
~3.8! is satisfied, x0Þ0 holds. The graphsy5H8 and
y5h(x2x0)/T in this case are drawn in Fig. 2~a!. At the
bifurcation point x50, the two graphs meet tangentially.
From Fig. 2~a!, one can get the graph ofF8 @Figs. 2~b!–
2~d!#. Then, the graphs ofF @Fig. 2~e!# andF9 @Fig. 2~f!#
follow. It can be seen that there is no stationary solution near
the bifurcation point forT.Tc and a stable and an unstable
stationary point appear forT,Tc . This implies that a new
minimum and an unstable saddle point are born atT5Tc
besides the existing minima as the temperature decreases as
shown in Fig. 2~g!. At the birth of the new minimum, this
minimum has a higher free energy than that of the global
minimum at the critical temperatureTc . The graph ofF9 in
Fig. 2~f! shows that the conditionF98(x50)Þ0, ~3.8b!, is
satisfied.

FIG. 2. A saddle-node bifurcation that generates a new local
minimum. ~a! Two graphs,y5dH/dx, and y5h(x2x0)/T for
T,Tc , T5Tc , andT.Tc , are shown.~b! The graph of (]F/]x)
for T.Tc . There is only one minimum.~c! The graph of
(]F/]x) for T5Tc . A new stationary point is generated.~d! The
graph of (]F/]x) for T,Tc . There are three stationary points; two
are minima and the other is a saddle point.~e! The graphs ofF for
T.Tc , T5Tc , andT,Tc . ~f! The graphs of (]2F/]x2). At the
bifurcation point, i.e.,T5Tc andx50, the free energy curvature is
0. ~g! A new minimum and an unstable saddle point are born at
T5Tc beside the existing minima as the temperature decreases.
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There is another case whose figure is drawn in Fig. 3. In
this case, a minimum disappears together with an unstable
saddle point atT5Tc as the temperature decreases. If the
saddle-node condition~3.8! is satisfied, the stationary condi-
tion ~3.4! can be solved as a power series with respect to
e1/2. The leading order term can be calculated as

dVn56vnA2ek, ~3.10!

where k52(vnb@1#n /((vn
3a@1#n)52H8(x50)/

@TcH-(x50)#. This leading order of the stationary solution
coincides with that of the reduced free energy. Therefore,
stabilities of the stationary solutions are determined by those
for the reduced one dimensional free energy drawn in Figs. 2
and 3. If k.0, there is no solution fore.0(T.Tc) and
there is a pair of solutions fore,0(T,Tc). This corre-
sponds to Fig. 2, where a new minimum is born asT de-
creases. Ifk,0, there is no solution fore,0(T,Tc) and
there is a pair of solutions fore.0(T.Tc). This corre-
sponds to Fig. 3, where a minimum disappears asT de-
creases.

IV. TSP AND SYMMETRIES

A. Cyclic and reverse symmetries in TSP

The bifurcation structure is affected by the symmetry of
the problem@11#. In the following, we consider the traveling-

salesman problem having a cyclic symmetry and a reverse
symmetry. An energy function for the TSP is given by

E~V!5
1

2 (
a,b,n,m51

N0

Wa,n;b,mVa,nVb,m1 (
a,n51

N0

Ja,nVa,n1E0

5
1

2 (
a,b,n51

N0

DabVa,n~Vb,~n11!1Vb,~n21!!

1
A

2 F(
a

S (
n

Va,n21D 21(
n

S (
a

Va,n21D 2
12(

a,n
Va,n~12Va,n!G , ~4.1!

whereN0 is the number of cities,Va,n represents the prob-
ability that the salesman visits citya at thenth visit, and
Dab denotes the distance between citya and city b. This
energy function is invariant under theN0th order cyclic
transformation:

Va,n→~T m
@N0#V!a,n[Va,n1m ~m51, . . . ,N021!,

~4.2!

whereT m1N0

@N0#
[T m

@N0# andVa,n1N0
[Va,n . The energy func-

tion is also invariant under theN0th order reverse transfor-
mation:

Va,n→~Rm
@N0#V!a,n[Va,m2n ~m50,1, . . .N021!,

~4.3!

whereRm1N0

@N0#
[Rm

@N0# . The entropy and the free energy

functions are also invariant under these transformations. The
cyclic permutation symmetry corresponds to the fact that the
tour length does not depend on the starting city. The reverse
symmetry corresponds to the fact that the tour length does
not change when the tour direction is reversed.

There is a symmetric stationary solutionVa* of the free
energy function for anyT:

Va,n* 5Va* ~a,n51, . . . ,N0!. ~4.4!

This can be proved as follows. The stationary condition for
the symmetric solution can be derived from the reduced free
energy function for the symmetric solution, which is given
by

Fs /N05 (
a,b51

N0

DabVaVb1
A

2 FN0(
a

~Va21/N0!
2

1S (
a

Va21D 212(
a

Va~12Va!G
1T(

a
@ValnVa1~12Va!ln~12Va!#. ~4.5!

Since this reduced free energy function has at least one mini-
mum point for anyT, the original free energy function also
has a symmetric stationary solution for anyT. Since the
original free energy function has a unique minimum at the

FIG. 3. A saddle-node bifurcation that annihilates a local mini-
mum and a saddle point.~a! Two graphs, y5dH/dx, and
y5h(x2x0)/T for T,Tc , T5Tc , andT.Tc , are shown.~b! The
graph of (]F/]x) for T.Tc . There are three stationary points; two
are minima and the other is a saddle point.~c! The graph of
(]F/]x) for T5Tc . The minima and the saddle point collide with
each other.~d! The graph of (]F/]x) for T,Tc . There is only one
minimum. ~e! A minimum and a saddle point collide with each
other atT5Tc beside the existing minima and are annihilated as the
temperature decreases.
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high temperature limit, the unique minimum must be this
symmetric solution~4.4!. Below the critical temperature, this
symmetry breaks down to partially symmetric solutions or
nonsymmetric solutions.

If N0 is decomposed as a product of two integersN1 and
N, i.e.,N05N1N, a solutionV having theNth order cyclic
symmetry,

Va,n* 5~T m
@N#V* !a,n[~T mN1

@N0#V* !a,n[Va,n1mN1
*

~a51, . . . ,N0 ;n51, . . . ,N1 ;m51, . . . ,N21!, ~4.6!

may appear. This solution may or may not have theNth
order reverse symmetry

Va,n* 5~Rm
@N#V* !a,n[~RmN11m0

@N0# V* !a,n[Va,m01mN12n*

~a,n51, . . . ,N0 ;m50,1, . . . ,N21! ~4.7!

for a specificm0 (1<m0<N1) called a reflection point in-
dex. If there is a minimum solution with theNth order cyclic
and reverse symmetries, there must beN1 equivalent mini-
mum solutions due to the invariance of the free energy func-
tion under theN0th order cyclic and reverse transformations.
They are related with each other by theN1th order cyclic
transformation:Va,n→Va,n1m (a,n51, . . . ,N0 ;m51, . . . ,
N121). Each solution has a different reflection point index
m0 (1<m0<N1) for the reverse symmetry~4.7!. If they do
not have the reverse symmetry, there must be 2N1 equivalent
minimum solutions. They are related with each other by the
N1th order cyclic transformation~4.7! and theN1th order
reverse transformation:Va,n→Va,m2n (a,n51, . . . ,N0 ;
m50, . . . ,N121).

If one expands the free energy function around a mini-
mum solutionV* with theNth order cyclic symmetry,~4.6!,
with respect todVa,n5Va,n2Va,n* , the free energy function
F(V*1dV) is invariant under theNth order cyclic transfor-
mation:

dV→T m
@N#dV ~m51, . . . ,N21!. ~4.8!

If the solutionV* has theNth order reverse symmetry~4.7!,
the free energy functionF(V*1dV) is also invariant under
theNth order reverse transformation:

dV→Rm
@N#dV ~m50,1, . . . ,N21!. ~4.9!

B. Eigenmodes for the curvature matrix

As in the previous section, the curvature matrixM of the
free energy function at the bifurcation point is given by

Ma,n;b,m[~Da,nDb,mF !~V* ,Tc!

5Wa,n;b,m1dabdnmTc /@Va,n* ~12Va,n* !#

~a,b,n,m51, . . . ,N0!. ~4.10!

Because of the invariance under theNth order cyclic trans-
formation, the curvature matrix satisfies the relation

MT m
@N#5T m

@N#M . ~4.11!

Then, eigenvectors of the curvature matrixM are also eigen-
vectors of theNth order cyclic transformationT m

@N# . The
eigenmodes of this matrix are characterized by theNth roots
of 1:

a~k!5exp~2pki/N!, a~k!N51,

a ~̄k!5a~k!215a~2k!, kPGN , ~4.12!

where GN5$0,61, . . . ,6(N/221),N/2% for even N, and
GN5$0,61, . . . ,6(N21)/2% for oddN. The eigenvector of
M associated witha(k) can be written as

ua,i1~n21!N1
~k![va,i~k!•a~k!n

~a51, . . . ,N0 ; i51, . . . ,N1 ;n51, . . . ,N!, ~4.13!

which is also an eigenvector of theNth order cyclic transfor-
mation:

T m
@N#u~k!5a~k!mu~k!. ~4.14!

The reduced (N0 ,N1)-dimensional eigenequation for
va,i(k) is written as

(
b51

N0

(
j51

N1

Va,i ;b, j~k!vb, j~k!5l~k!va,i~k!

~a51, . . . ,N0 ; i51, . . . ,N1!, ~4.15a!

Va,i ;b, j~k![ (
n51

N

Ma,i ;b, j1~n2N!N1
a~k!n

~a,b51, . . . ,N0 ; i , j51, . . . ,N1!. ~4.15b!

SinceM is a real symmetric matrix,V(k) becomes a Her-
mite matrix: V†(k)5V(k), where † denotes the Hermite
conjugate, i.e.,Va,i ;b, j

† [V̄b, j ;a,i . Therefore, the eigenvalue
l(k) is real. From~4.15b!, V(k) satisfies

V̄~k!5V~2k!, ~4.16!

which implies thatv̄(k)5v(2k) andl(k)5l(2k). Then,
eigenvectors ofM , va,i(k)a(k)

n and v̄a,i(k)a(2k)n,
have the same eigenvalue, so that an eigenvalue corre-
sponding to complexa(k) is doubly degenerate and an
eigenvalue corresponding to reala(k) ~51 or 21! is
simple. Let $va,i(r ,k)ur50,1, . . . ,N0N121;kPGN% and
$l(r ,k)ur50,1, . . . ,N0N121;kPGN% be the complete set
of the eigenvectors and the eigenvalues of~4.15!, respec-
tively. Let us define the eigenmode coordinatezr ,k by

dVa,i1~n21!N1
5 (

kPGN
(
r50

N0N121

zr ,k@va,i~r ,k!a~k!n#

~a51, . . . ,N0N1 ;n51, . . . ,N!. ~4.17!

In terms of the eigenmode coordinatezr ,k , the Nth order
cyclic transformation~4.8! becomes

zr ,k→T m
@N#zr ,k5a~k!mzr ,k ~m51, . . . ,N21!. ~4.18!
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SincedVa,i1(n21)N1
is real andv̄a,i(r ,k)5va,i(r ,2k), the

following relation holds:

z̄ r ,k5zr ,2k . ~4.19!

If the minimum solutionV* has theNth order reverse
symmetry~4.7!, M satisfies the relation

Rm
@N#M5MRm

@N# . ~4.20!

Let us define a reverse transformation matrixR̂(k) in the
reduced space (a,i ) by

R̂~k!a,i ;b, j[~a~k!2dm02 i , j1a~k!dm02 i1N1 , j
!dab .

~4.21!

Then,R̂(k) satisfies

R̂†~k!R̂~k!51, R̂21~k!5R̂†~k!. ~4.22!

From relation~4.20!, it follows that

R̂~k!V~k!5V~2k!R̂~k!. ~4.23!

This implies that

R̂~k!v~r ,k!5x~r ,k!v~r ,2k!, ~4.24!

where x(r ,k) is a complex number and satisfies
ux(r ,k)u251 due to~4.22!. x(r ,k) is called the reverse sym-
metry index. By using R̂(k), the Nth order reverse
transformation for the eigenvector of M ,
ua,i1(n21)N1

(r ,k)[va,i(r ,k)a(k)
n, can be written as

@Rm
@N#u~r ,k!#a,i1~n21!N1

5a~k!m@R̂~k!v~r ,k!#a,ia~2k!n.
~4.25!

From ~4.24!, it can be proved that

Rm
@N#u~r ,k!5x~r ,k!a~k!mu~r ,2k!. ~4.26!

Then, theNth order reverse transformation~4.9! for eigen-
mode coordinatezr ,k becomes

zr ,k→Rm
@N#zr ,k5x~r ,k!a~k!mz̄r ,k . ~4.27!

It should be noted thatz̄r ,k5zr ,k andx(r ,k)561 for a real
a(k) since V(k)5V(2k),v(r ,k)5v(r ,2k)5 v̄(r ,k) and
R̂(k)251 are satisfied for a reala(k).

V. BIFURCATIONS IN TSP

A. Saddle-node bifurcation

1. N51 case

If the solutionV* at the bifurcation point has no symme-
try, which corresponds toN51, the saddle-node bifurcation
occurs, as explained in Sec. III. In this case, 2N0 equivalent
minima appear or disappear simultaneously by the saddle-
node bifurcation due to theN0th order cyclic and reverse
transformation invariance of the free energy function.

For a solutionV* with the Nth order cyclic symmetry
~4.6!, the bifurcation structure depends on which eigenmode

becomes a zero eigenvalue mode at the bifurcation point as
described below.

2. a„0… and no reverse symmetry case

First, let us assume that one of the eigenvectors with
the Nth order cyclic symmetry, which corresponds to
a(0)(51), becomes a zero eigenvalue mode. Let
(r ,k)5(0,0) correspond to this zero eigenvalue mode. Since
a(0) is real, this eigenvalue is simple. It is also assumed that
the solutionV* has no reverse symmetry. The zero eigen-
value coordinatez00 does not change under theNth order
cyclic transformation~4.18!. Then, theNth order cyclic
transformation invariance of the free energy does not give
any special relation for the quantities,DTDz00

F andDz00
3 F,

which characterize the saddle-node condition~3.5!. In this
case, the saddle-node condition is generically satisfied:

DTDz00
F~z50!5N(

a51

N0

(
i51

N1

b@1#a,iva,i~0,0!Þ0, ~5.1a!

Dz00
3 F~z50!5N(

a51

N0

(
i51

N1

a@1#a,iva,i
3 ~0,0!Þ0, ~5.1b!

where b@1#a,i5 ln(Va,i* /(12Va,i* )# and a@1#a,i
5Tc(2Va,i* 21)/@Va,i* (12Va,i* )#2. Therefore, 2N1 equiva-
lent minima with theNth order cyclic symmetry appear or
disappear simultaneously by the saddle-node bifurcation.

3. a„0…, the reverse symmetry andx51 case

Let us consider the case that the minimum solutionV* at
the bifurcation point also has the reverse symmetry. If the
reverse symmetry index of the zero eigenvalue mode,
x(0,0), is11, the zero eigenvalue coordinatez00 does not
change under the reverse transformation~4.27! sincez00 is
real. Then, the reverse transformation invariance of the free
energy does not give any special relation forDTDz00

F and

Dz00
3 F, and the saddle-node bifurcation occurs. In this case,

N1 equivalent minima with theNth order cyclic and reverse
symmetries appear or disappear simultaneously by the
saddle-node bifurcation.

B. Pitchfork bifurcation

1. a„0…, the reverse symmetry andx521 case

If the reverse symmetry index of the zero eigenvalue
mode,x(0,0), is21, the zero eigenvalue coordinatez00 is
transformed to2z00 under the reverse transformation~4.27!.
Then, the reverse transformation invariance of the free en-
ergy gives the relation

DTDz00
F~z50!52DTDz00

F~z50!50, ~5.2a!

Dz00
3 F~z50!52Dz00

3 F~z50!50. ~5.2b!

This invariance does not give any relation forDTDz00
2 F and

Dz00
4 F, and
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DTDz00
2 F~z50!5N(

a51

N0

(
i51

N1

b@2#a,iva,i
2 ~0,0!Þ0, ~5.3a!

Dz00
4 F~z50!5N(

a51

N0

(
i51

N1

a@2#a,iva,i
4 ~0,0!Þ0 ~5.3b!

are satisfied generically. The conditions~5.2! and ~5.3! are
nothing but the pitchfork conditions,~3.6! and ~3.7!. There-
fore, the pitchfork bifurcation occurs. The relation~5.2! is
structurally stable, since the reverse transformation invari-
ance guarantees the relation even if the energy parameters
are slightly changed.

The stationary condition~3.4! can be solved as a power
series with respect toe1/2. There is a solutiondVs0 with the
Nth order cyclic and reverse symmetries for anyT. Its ex-
pression is given in the Appendix. Depending on a constant
D0 , whose expression is also given in the Appendix, there
are other solutions. IfD0e.0, there is a pair of solutions:

dVa,i1~n21!N1

6 56AD0eva,i~0,0!1O~e!. ~5.4!

This pair of solutions does not exist ifD0e,0. The pair of
solutions has theNth order cyclic symmetry but does not
have the reverse symmetry. They are related with each other
by the reverse transformationRm

@N#dV15dV2. There are
four types of bifurcation diagrams~Fig. 4!. There is no sym-
metry breaking ofNth order cyclic symmetry, i.e., all the
solutions haveNth order cyclic symmetry. On the other
hand, the symmetry breaking of the reverse symmetry occurs
in this case. In Fig. 4~a!, a minimum with the reverse sym-
metry forT.Tc becomes a saddle point forT,Tc and a pair
of minima without reverse symmetry appears forT,Tc . In
Fig. 4~b!, a pair of minima without reverse symmetry for
T.Tc disappears atT5Tc , and a saddle point with reverse
symmetry forT.Tc becomes a minimum with the reverse
symmetry forT,Tc . In Fig. 4~c!, a saddle point with re-
verse symmetry forT.Tc becomes a minimum with reverse
symmetry forT,Tc . There is also a pair of saddle points
without reverse symmetry forT,Tc . In Fig. 4~d!, a mini-
mum with reverse symmetry forT.Tc becomes a saddle
point forT,Tc . There is also a pair of saddle points without
reverse symmetry forT.Tc .

2. a„N/2… and no reverse symmetry case

If N is even, there is another reala(N/2)(521). Let us
assume that one of the modes corresponding toa(N/2) be-
comes a zero eigenvalue mode. This zero eigenvalue is
simple. It is also assumed that the solutionV* has no reverse
symmetry. Let (r ,k)5(0,N/2) correspond to this zero eigen-
value mode. The corresponding eigenvector is given by
va,i(0,N/2)(21)n, which has (N/2)th order cyclic symme-
try. The zero eigenvalue coordinatez0,N/2 is transformed to
6z0,N/2 under theNth order cyclic transformation. TheNth
order cyclic transformation invariance of the free energy
gives the relation

DTDz0,N/2
F~z50!52DTDz0,N/2

F~z50!50, ~5.5a!

Dz0,N/2
3 F~z50!52Dz0,N/2

3 F~z50!50, ~5.5b!

as in~5.2!. Therefore, the structurally stable pitchfork bifur-
cation occurs.

The stationary condition~3.4! can be solved as a power
series with respect toe1/2. There is a solutiondVs1 with the
Nth order cyclic symmetry for anyT. Its expression is given
in the Appendix. Depending on a constantD1 , whose ex-
pression is also given in the Appendix, there are other solu-
tions. If D1e.0, there is a pair of solutions:

dVa,i1~n21!N1

6 56AD1eva,i~0,N/2!~21!n1O~e!. ~5.6!

This pair of solutions does not exist ifD1e,0. According to
consideration on theNth order cyclic transformation invari-
ance, it can be proved thatzr ,k50 for kÞ0,N/2. Then, the
pair of solutionsdV6 has (N/2)th order cyclic symmetry:

dVa,i1~n12m21!N1

6 5dVa,i1~n21!N1

6

~a51,. . . ,N0 ; i51, . . . ,N1 ;n51,. . . ,N;m51,. . . ,N/221!.
~5.7!

The solutions of the pair are related to each other by the
second order cyclic transformationT 1

@N#dV15dV2. There
are four types of bifurcation diagrams~Fig. 4!. In Fig. 4~a!, a
minimum with Nth order cyclic symmetry forT.Tc be-
comes a saddle point forT,Tc and a pair of minima with
(N/2)th order cyclic symmetry appears forT,Tc . In Fig.
4~b!, a pair of minima with (N/2)th order cyclic symmetry
for T.Tc disappears atT5Tc , and a saddle point with
Nth order cyclic symmetry forT.Tc becomes a minimum
with Nth order cyclic symmetry forT,Tc . In Fig. 4~c!, a
saddle point withNth order cyclic symmetry forT.Tc be-
comes a minimum withNth order cyclic symmetry for
T,Tc . There is also a pair of saddle points with (N/2)th
order cyclic symmetry forT,Tc . In Fig. 4~d!, a minimum
with Nth order cyclic symmetry forT.Tc becomes a saddle
point for T,Tc . There is also a pair of saddle points with
(N/2)th order cyclic symmetry forT.Tc .

3. a„N/2… and the reverse symmetry case

The presence of reverse symmetry does not change the
above bifurcation diagram. The symmetry breaking of re-

FIG. 4. A reverse symmetry breaking bifurcation. The abscissa
denotes the value of a state variable, and the ordinate denotes the
temperature. The upper side of each figure denotes high tempera-
ture. The solid line and dotted line denote a stable stationary point
~minimum! and an unstable stationary point~saddle point!, respec-
tively. The straight line and curved line denote a stationary point
with reverse symmetry and without reverse symmetry, respectively.

5160 53MASA-AKI SATO AND SHIN ISHII



verse symmetry does not occur even if the reverse symmetry
index of the zero eigenvalue mode is21. The pair of solu-
tions dV6 has reverse symmetry:

R112m
@N# dV65dV6 if x~0,N/2!521, ~5.8a!

R2m
@N#dV65dV6 if x~0,N/2!51 ~m50,1, . . . ,N/221!,

~5.8b!

which is (N/2)th order reverse symmetry.

C. Symmetry breaking of cyclic symmetry

Next, we consider the case in which one of the modes
corresponding to a complexa(K)(KPGN ,KÞ0,N/2) be-

comes a zero eigenvalue mode. This eigenvalue is doubly
degenerate. In this subsection, we assume that there is no
common divisor forK andN. In order to simplify the dis-
cussion, let us first consider a specific case, i.e.,
N151,N55,K51 and the suffixa is neglected since it is not
relevant to the symmetry properties. The indexr is also
omitted. In this case, the solutionV* has reverse symmetry
and reverse symmetry indices of all the eigenmodes are
11. A more general case will be discussed later.

1. N55,a„1…, the reverse symmetry andx51 case

The free energy functionF(V*1dV,Tc1e) in terms of
the eigencoordinate$zkuk50,61,62% is given by

F~V*1dV,Tc1e!/55l~0!z0
2/21l~2!z̄2z21eb@1#z01~eb@2#/2!@z0

212~ z̄1z11 z̄2z2!#1~a@1#/6!@z0
316z0~ z̄1z11 z̄2z2!

13~z1
2z̄21 z̄1

2z21z1z2
21 z̄1z̄2

2!#1~a@2#/24!$z0
4112z0

2~ z̄1z11 z̄2z2!112z0~ z̄2z1
21z2z̄1

21z1z2
21 z̄1z̄2

2!

16@~ z̄1z1!
21~ z̄2z2!

214~ z̄1z1!~ z̄2z2!#14~z1
3z21 z̄1

3z̄21z1z̄2
31 z̄1z2

3!%1•••. ~5.9!

Because of the invariance under theN(55)th order cyclic
transformation~4.18! and theN(55)th order reverse trans-
formation ~4.27!, only the invariant combinations under
~4.18! and ~4.27! appear in~5.9!.

The solution of the stationary condition,]F/]zk50, can
be calculated as a power series with respect toe1/2. Note that
in ~5.9! the leading orders forz0 are z0

2 and ez0 , those for
z1 are e( z̄1z1),z0( z̄1z1), and (z̄1z1)

2, and those forz2 are
( z̄2z2) and (z̄2z1

21z2z̄1
2). This implies that the leading orders

of the stationary solution arez0;e,(z̄1z1);e, andz2;z1
2 .

Then the nonzero eigenvalue modesz0 andz2 are an order of
e. On the other hand, the zero eigenvalue modez1 is an
order of e1/2. The nonzero eigenvalue modesz0 andz2 can
be expanded aszk5(s52

` zk
(s)(k50,2), wherezk

(s) is an order
of es/2. By assuming thatz1 is an order ofe

1/2, the stationary
conditions for z0 and z2 can be solved successively, and
zk(k50,2) can be expressed in terms ofz1:

z05C0,1
~2!e1C0,2

~2!~ z̄1z1!1C0,1
~4!e~ z̄1z1!1C0,2

~4!~ z̄1z1!
2

1C0,1
~5!~z1

51 z̄1
5!1•••, ~5.10a!

z25C2,1
~2!z1

21C2,1
~3!z̄1

31eC2,1
~4!z1

21C2,2
~4!z1

2~ z̄1z1!1•••,
~5.10b!

whereC(s)’s are coefficients of orderes/2, which can be de-
termined by comparing the terms of orderes/2 in
]F/]zk50. Because of the invariance under the fifth order
cyclic transformation and the fifth order reverse transforma-
tion, each term on the right hand side of~5.10! has the same
transformation property as the left hand side. Substituting
~5.10! into ~5.9!, one can get the effective free energy for the
zero eigenvalue modez1:

F~z1!5~d1e/2!~ z̄1z1!1~d2/4!~ z̄1z1!
2

1~d3/5!~z1
51 z̄1

5!1•••, ~5.11!

where the expressions of constantsd’s are given in the Ap-
pendix. This corresponds to the effective free energy in the
center manifold@12# defined by]F/]zk50 for k50,2. The
effective free energy functionF(z1) is a function of the el-
ementary invariant combinations, (z̄1z1) and (z1

51 z̄1
5), @11#

because of the invariance under the fifth order cyclic and
reverse transformations. The leading order terms,e( z̄1z1)
and (z̄1z1)

2 in ~5.11!, are invariant under the continuous
transformationz1→eiuz1(0<u,2p). Therefore, the lead-
ing order solution is continuously degenerate. However, the
higher order term (z1

51 z̄1
5), which is not invariant under this

continuous transformation but invariant under~4.18!, breaks
this continuous degeneracy. Let us define a polar coordinate
(g,f) by

z15geif, g>0, 0<f,2p. ~5.12!

Then, the free energy~5.11! can be written as

F~g,f!5~d1/2!eg21~d2/4!g41~2d3/5!g5cos5f1•••.
~5.13!

The shape of the effective free energy~5.13! is shown in Fig.
5. The stationary conditions are given by

05]F/]g5~d1e1d2g
212d3g

3cos5f1••• !g,
~5.14a!

05]F/]f522d3g
5sin5f1•••. ~5.14b!

Equation~5.14! has a solution:

g50 ~5.15!
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for any e, which has the fifth order cyclic and reverse sym-
metries since it has only a symmetric componentz0 . If
(ed1 /d2),0, there is another set of solutions:

g5A~2d1 /d2!e1O~e!, ~5.16a!

f5 jp/5 ~ j50,1, . . . ,9!. ~5.16b!

The stability of these solutions is determined by the curva-
ture matrix:

]2F/]g25d1e13d2g
218d3g

3cos5f1•••, ~5.17a!

]2F/]f25210d3g
5cos5f1•••, ~5.17b!

]2F/]g]f5210d3g
4sin5f1•••. ~5.17c!

The curvature matrix of the symmetric solution~5.15! be-
comes

]2F/]g25d1e. ~5.18!

The symmetric solution is stable ford1e.0, and unstable for
d1e,0. The curvature matrix for the set of solutions~5.16!
becomes

]2F/]g2522d1e1O~e3/2!, ~5.19a!

]2F/]f25210d3@2~d1 /d2!e#5/2cos~ jp!1O~e3!, ~5.19b!

]2F/]g]f50. ~5.19c!

The stability with respect tof depends on the sign ofd3 .
The curvature (]2F/]f2) becomes positive forj even~odd!
if d3,0(.0). The stability with respect tog is opposite to
that of the symmetric solution. The curvature (]2F/]g2) be-
comes positive ford1e,0, and negative ford1e.0. Let us
denotej even~odd! solutions by

z1
e@J#5gei2pJ/5, ~5.20a!

z1
o@J#5ge~ i2pJ/5!1~ ip/5! ~J50,1, . . . ,4!, ~5.20b!

whereg is given by~5.16a!. Under the fifth order cyclic and
reverse transformations, they are transformed as

T m
@5#z1

e~o!@J#5a~1!mz1
e~o!@J#5z1

e~o!@J1m# ~mod 5!,
~5.21a!

Rm
@5#z1

e~o!@J#5a~1!mz̄1
e~o!@J#

5z1
e~o!@m2J~m2J21!# ~mod 5!.

~5.21b!

These solutions are related by the fifth order cyclic transfor-
mationsT m

@5# and have no cyclic symmetry. From~5.21!, it is
proved that they have the first order reverse symmetry:

Rm@J#
@5# z1

e~o!@J#5z1
e~o!@J# form@J#52J~2J11! ~mod 5!.

~5.22!

Therefore, the cyclic symmetry is broken by this bifurcation
while the reverse symmetry is preserved.

Four types of bifurcation diagrams are illustrated in Fig.
6. In Fig. 6~a!, a minimum with the fifth order cyclic sym-
metry forT.Tc becomes a saddle point with the fifth order
cyclic symmetry forT,Tc . Five minima appear together
with five saddle points forT,Tc . These new minima are not

FIG. 5. The shape of the effective free energy,
Eq. ~5.13!, on a two-dimensional subspace com-
posed by two eigenvectors that correspond to the
zero eigenvalue mode. Five minima without cy-
clic symmetry, five saddle points without cyclic
symmetry, and a saddle point with cyclic symme-
try can be observed. Stationary points without cy-
clic symmetry are located on the circle whose
diameter isg.

FIG. 6. A cyclic symmetry breaking bifurcation. The abscissa
denotes the value of a state variable, and the ordinate denotes the
temperature. The upper side of each figure denotes high tempera-
ture. The solid line and dotted line denote a stable stationary point
~minimum! and an unstable stationary point~saddle point!, respec-
tively. The straight line and curved line denote a stationary point
with theN-th order cyclic symmetry, and a stationary point with the
Q-th order cyclic symmetry, respectively, whereN5R•Q. In this
figure,N55 andQ51.
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symmetric with respect to the cyclic symmetry. In Fig. 6~b!,
five minima without the cyclic symmetry forT.Tc disap-
pear together with five saddle points without the cyclic sym-
metry atT5Tc . A saddle point with the fifth order cyclic
symmetry forT.Tc becomes a minimum with the fifth order
cyclic symmetry forT,Tc . In Fig. 6~c!, a saddle point with
fifth order cyclic symmetry forT.Tc becomes a minimum
with fifth order cyclic symmetry forT,Tc . There are ten
saddle points without cyclic symmetry forT,Tc . In Fig.
6~d!, a minimum with the fifth order cyclic symmetry for
T.Tc becomes a saddle point with the fifth order cyclic
symmetry forT,Tc . There are ten saddle points without
cyclic symmetry forT.Tc . All of the solutions have the
reverse symmetry.

2. a„K… and no reverse symmetry case

Almost the same argument can be made for a general case
with arbitraryN0 andN, whereN05N1N. First, let us as-
sume there is no reverse symmetry; i.e., the minimum at the
bifurcation point has no reverse symmetry. Let (r ,k)
5(0,K) be the zero eigenvalue mode. The stationary solu-
tion can also be calculated as a power series with respect to
e1/2. Consideration on the order ofe indicates that the zero
eigenvalue modez0,K is an order ofe1/2, the symmetric
modeszr ,0 are an order ofe, and all other modes are an order
of e or higher.~There is an exception, i.e.,N53. In this case,
the zero eigenvalue modez0,K is an order of e, since
z0,K
3 1 z̄0,K

3 becomes a leading order term in the free energy.!
The stationary conditions,Dzr ,k

F50 for (r ,k)Þ(0,K), can

be solved in terms ofe andz0,K , which is assumed to be an
order of e1/2. Due to the invariance under theN-th order
cyclic transformation~4.18!, zr ,k can be expressed as

zr ,05Cr ,0,1
~2! e1Cr ,0,2

~2! ~ z̄0,Kz0,K!1O~e2!, ~5.23a!

zr ,K5Cr ,K,1
~3! ez0,K1O~e5/2! ~rÞ0!, ~5.23b!

zr ,k5Cr ,k,1
~ l1! z0,K

l1 1O~e11 l1/2! or Cr ,k,1
~ l2! z̄0,K

l2 1O~e11 l2/2!,
~5.23c!

where l 1 is the minimum integer that satisfiesl 1K
5k(mod N), and l 2 is the minimum integer that satisfies
2 l 2K5k(mod N). The leading order term is given by
z0,K
l1 ( z̄0,K

l2 ) if l 1< l 2( l 1> l 2). Substituting~5.23! into the free
energy function, one can obtain the effective free energy for
the zero eigenvalue modez0,K :

F~z0,K!5~d1/2!e~ z̄0,Kz0,K!1~d2/4!~ z̄0,Kz0,K!21•••

1~1/N!~d3z0,K
N 1d̄3z̄0,K

N !1•••. ~5.24!

Because of the invariance under theNth order cyclic trans-
formation ~4.18!, the effective free energy functionF(z0,K)
is a function ofz̄0,Kz0,K , z0,K

N , andz̄0,K
N , if there is no reverse

symmetry. The stationary solution ofDz0,K
F50 can be ob-

tained by using the same argument as in theN55 case.
There is a symmetric solution for anye: z0,K50. If
(ed1 /d2),0, there is another set of solutions:

z0,K
e @J#5ge~ i2pJ/N!2~ if0 /N!, ~5.25a!

z0,K
o @J#5ge~ i2pJ/N!1@ i ~p2f0!/N# ~J50,1, . . . ,N21!,

~5.25b!

whereg is given by~5.16a! andd35ud3ueif0. The stabilities
of these solutions are the same as in theN55 case. Under
theNth order cyclic transformation, they are transformed as

T m
@N#z0,K

e~o!@J#5a~K !mz0,K
e~o!@J#5z0,K

e~o!@J1mK# ~modN!.
~5.26!

They are transformed to each other by theNth order cyclic
transformationsT m

@N# and have no cyclic symmetry. Then,
there are four types of bifurcation diagrams as shown in Fig.
6 like in the case ofN55. The only difference is that
N55 is replaced by an arbitraryN. For example, the bifur-
cation diagram in Fig. 6~a! corresponds to the situation in
which a minimum with theNth order cyclic symmetry for
T.Tc becomes a saddle point with theNth order cyclic
symmetry forT,Tc . N minima without the cyclic symme-
try appear together withN saddle points without the cyclic
symmetry forT,Tc . These solutions have no reverse sym-
metry.

3. a„K…, the reverse symmetry case

Now, we consider the effect of the reverse symmetry. Let
us assume that the minimum solution at the bifurcation point
has the reverse symmetry. In this case, the elementary invari-
ant combinations under the reverse transformation~4.27! are
z̄0,Kz0,K and z0,K

N 1x(0,K)Nz̄0,K
N , since ux(0,K)u251. The

effective free energy functionF(z0,K) is the same as in
~5.24! except that (d3z0,K

N 1d3z̄0,K
N ) is replaced by

d3@z0,K
N 1x(0,K)Nz̄0,K

N #. There is a symmetric solution:
z0,K50 for any e. If ( ed1 /d2),0, there is another set of
solutions

z0,K
e @J#5ge~ i2pJ/N!1~ ic/2!, ~5.27a!

z0,K
o @J#5ge~ i2pJ/N!1~ ip/N!1~ ic/2! ~J50,1, . . . ,N21!,

~5.27b!

whereg is given by~5.16a! andx(0,K)5eic. The stabilities
of these solutions are the same as in theN55 case. Their
transformation properties under theNth order cyclic transfor-
mation are the same as in~5.26!. The solutions~5.27! are
transformed to each other by theNth order cyclic transfor-
mation T m

@N# and have no cyclic symmetry. Under theNth
order reverse transformation, they are transformed as

Rm
@N#z0,K

e~o!@J#5x~0,K !a~K !mz̄0,K
e~o!@J#

5z0,K
e~o!@mK2J~mK2J21!# ~modN!.

~5.28!

From ~5.28!, it is proved that they have first order reverse
symmetry:

Rm@J#
@N# z0,K

e~o!@J#5z0,K
e~o!@J#

for m@J#K52J~2J11! ~modN!. ~5.29!
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Therefore, the reverse symmetry is not broken in this case.
The bifurcation diagrams are the same as those without re-
verse symmetry except that all the solutions have reverse
symmetry.

D. Partial symmetry breaking of cyclic symmetry

In Sec. V C, it is assumed that there is no common divisor
for K andN. In the following, it is assumed that the greatest
common measure ofN and K is Q(.1). Let us define
R5N/Q andP5K/Q. Then,NP5KR is satisfied and there
is no common divisor forP andR. Main differences from
the argument in Sec. V C are the following.

~1! Under theNth order cyclic transformation~4.18!,
zr ,k is transformed aszr ,k→a(k)mzr ,k , while z0,K

l ( z̄0,K
l ) is

transformed asz0,K
l →a(k)mlz0,K

l @z̄0,K
l →a(k)2mlz̄0,K

l #. The
transformation factors are written asa(k)m5ei2p(mk)/N and
a(K)ml5ei2p(mlK)/N @a(K)2ml5e2 i2p(mlK)/N#. In order that
z0,K
l ( z̄0,K

l ) is transformed as zr ,k , the condition
k5 lK (2 lK )(mod N) should be satisfied. Ifk is a multiple
of Q, there is anl that satisfies this condition. Ifk is not a
multiple of Q, this condition cannot be satisfied for anyl .
Therefore,~5.23c! is replaced by

zr ,k5HCr ,k,1
~ l ! z0,K

l if k5 lQ

0 if k is not a multiple ofQ.
~5.30!

Sincea(k)R51 for k5 lQ, the above solution hasQth order
cyclic symmetry:

T m
@Q#zr ,k5zr ,k ~m51, . . . ,Q21!, ~5.31!

whereT m
@Q#[T mR

@N# .
~2! Sincea(K)R51, elementary invariant combinations

under theNth order cyclic transformation~4.18! are given by
z̄0,Kz0,K , z0,K

R , and z̄0,K
R . Then, the effective free energy

functionF(z0,K) can be written as

F~z0,K!5~d1/2!e~ z̄0,Kz0,K!1~d2/4!~ z̄0,Kz0,K!21•••

1~1/R!~d3z0,K
R 1d̄3z̄0,K

R !1•••. ~5.32!

The set of solutions withQth order cyclic symmetry~5.31! is
given by

z0,K
e @J#5ge~ i2pJ/R!2~ if0 /R!, ~5.33a!

z0,K
o @J#5ge~ i2pJ/R!1@ i ~p2f0!/R# ~J50,1, . . . ,R21!,

~5.33b!

where g is given by ~5.16a! and d35ud3ueif0. Under the
Nth order cyclic transformation, the solutions are trans-
formed as

T m
@N#z0,K

e~o!@J#5a~K !mz0,K
e~o!@J#5z0,K

e~o!@J1mP# ~modR!.
~5.34!

They are transformed to each other byT m
@N#

(m51, . . . ,R21), sinceP andR have no common divisor.
The bifurcation diagrams are the same as in Sec. V C, except
that theN solutions in Sec. V C are replaced by theR solu-
tions withQth order cyclic symmetry.

~3! The effect of reverse symmetry is the same as in Sec.
V C, if the role of N and K is replaced byR and P in
~5.27!–~5.29!, respectively. Reverse symmetry is not broken.
The bifurcation diagrams are the same as those without re-
verse symmetry except that all the solutions have reverse
symmetry.

E. Summary

The previous arguments can be summarized as follows.
The MFT free energy for a TSP withN0 cities is invariant
under theN0th order cyclic transformation~4.2! and the
reverse transformation ~4.3!. At high temperature
(T.2jmin/4), there is a unique minimum of the free energy.
This unique minimum hasN0th order cyclic symmetry and
reverse symmetry. In the MFT annealing process, one will
follow this minimum solution to a sufficiently low tempera-
ture by gradual lowering of the temperature. As the tempera-
ture decreases, bifurcations of minimum solutions occur.

If N0 is decomposed asN05N1N, minima withNth order
cyclic symmetry~4.6! may appear. These minima may or
may not have the reverse symmetry~4.7!. If they have re-
verse symmetry, there must beN1 equivalent minima with
Nth order cyclic and reverse symmetries, due to theN0th
order cyclic and reverse transformation invariance. These
minima are related to each other by theN1th order cyclic
transformation. If they do not have reverse symmetry, there
must be 2N1 equivalent minima withNth order cyclic sym-
metry due to theN0th order cyclic and reverse transforma-
tion invariance.

There are three types of bifurcations.
~1! Saddle-node bifurcation: 2N1 (N1) equivalent minima

with Nth order cyclic symmetry~andNth order reverse sym-
metry! may appear or disappear simultaneously by the
saddle-node bifurcation. In TSPs, most typically 2N0 ~i.e.,
N15N0 ,N51), nonsymmetric equivalent minima appear.

~2! Reverse symmetry brealing bifurcation: Reverse sym-
metry may break by this bifurcation; it is one type of pitch-
fork bifurcation. Cyclic symmetry does not break by this
bifurcation. There are four types of bifurcation diagrams as
shown in Fig. 4. If there areN1 equivalent minima with
Nth order cyclic and reverse symmetries, each minimum
may bifurcate into a pair of minima without reverse symme-
try but with Nth order cyclic symmetry@Fig. 4~a!#. If there
are 2N1 equivalent minima without reverse symmetry but
with Nth order cyclic symmetry,N1 pairs of minima may
collide at theN1 bifurcation points and newN1 minima with
Nth order cyclic and reverse symmetries may appear@Fig.
4~b!#. Also,N1 equivalent minima withNth order cyclic and
reverse symmetries may appear@Fig. 4~c!# or disappear@Fig.
4~d!# simultaneously.

~3! Cyclic symmetry breaking bifurcation: The cyclic
symmetry may break by this bifurcation. Reverse symmetry
does not break by this bifurcation. There are four types of
bifurcation diagrams as shown in Fig. 6. Let us assumeN is
further decomposed asN5RQ. If there are 2N1 (N1)
equivalent minima withNth order cyclic symmetry~and
Nth order reverse symmetry!, each minimum may bifurcate
into R equivalent minima withQth order cyclic symmetry
~andQth order reverse symmetry! @Fig. 6~a!#. If there are
2N1 (N1) equivalent sets ofRminima withQth order cyclic
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symmetry~andQth order reverse symmetry!, 2N1 (N1) sets
of R minima collide at the 2N1 (N1) bifurcation points and
new 2N1 (N1) minima withNth order cyclic symmetry~and
Nth order reverse symmetry! may appear@Fig. 6~b!#. Also,
2N1 (N1) equivalent minima withNth order cyclic symme-
try ~andNth order reverse symmetry! may appear@Fig. 6~c!#
or disappear@Fig. 6~d!# simultaneously.

If the annealing solution bifurcates intoN1 ~or 2N1)
minima withNth order cyclic symmetry, one can follow the
annealing solution since these minima are equivalent to each
other. If the annealing solution is annihilated and there are
more than two distinctive local minima having lower free
energy values than the annihilation point at that temperature,
one may not uniquely follow the annealing solution because
of the instability at the annihilation point. Whether the an-
nealing solution is unique or not depends on the basin struc-
ture of the local minima. Therefore, the MFT annealing pro-

cedure does not necessarily give a unique minimum solution
in general, even though the procedure is deterministic.

When new minima appear, these local minima have a
higher free energy than that of the global minima at that
temperature. However, free energy levels of local minima
may cross each other as the temperature decreases. There-
fore, the MFT annealing procedure does not guarantee the
optimal solution. As a consequence, the annealing solution in
the MFT annealing is, in general, not a solution and is not
unique.

F. Example

Let us show a typical example of a bifurcation diagram.
Figure 7~a! is a bifurcation diagram of a five-city TSP, where
V1,i( i51, . . . ,5) for every minimum are plotted against tem-

FIG. 7. ~a! A typical example of a 5-city TSP
bifurcation diagram, whereV1,i( i51, . . . ,5) for
every minimum are plotted against temperature.
~b! The corresponding free energy diagram.
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perature. Figure 7~b! is the corresponding free energy dia-
gram. In the experiment, the parameterA in ~4.1! is set to
1.5.

At high temperature, i.e.,T.0.52, there is a unique mini-
mum ~a!. This minimum has fifth order cyclic and reverse
symmetries. AtT1'0.52, a saddle-node bifurcation occurs.
Since all new minima have neither cyclic symmetry nor re-
verse symmetry, ten nonsymmetric minima~b! appear simul-
taneously. Since the new born minima~b! are local minima,
their free energy level must be higher than that of the sym-
metric minimum~a! at the bifurcation temperature. However,
the former becomes lower than the latter as the temperature
is lowered. This free energy crossing occurs atT'0.518 as
seen in Fig. 7~b!. At T2'0.50, another saddle-node bifurca-
tion occurs, and ten nonsymmetric minima~c! appear. At
T3'0.48, a cyclic symmetry breaking bifurcation occurs.
The minimum~a! with fifth order cyclic and reverse symme-
tries bifurcates into five minima~d! without cyclic symmetry
but with first order reverse symmetry. Because of the reverse
symmetry, there are only three cascades observed in Fig.
7~a!. At T4'0.475, a reverse symmetry breaking bifurcation
occurs, and each of the five minima with first order reverse
symmetry~d! collides with saddle points and eventually be-
comes a saddle point. After this bifurcation, the original an-
nealing solutions disappear. At this temperature, there exist
two sets of minima,~b! and~c!, and the free energy levels of
these minima are lower than that of the disappearing minima
as shown in Fig. 7~b!. In this case, due to the instability of
the disappearing bifurcation point, which minimum is found
is ambiguous, even if the procedure is deterministic. This
example shows the nonuniqueness of the MFT annealing so-
lution.

VI. MFT ANNEALING OF POTTS SPIN MODEL

A. MFT for Potts spin model

A Potts spin model@9,14# for a TSP is defined by an
energy function:

E~S!5
1

2 (
a,b,n,m51

N0

Wa,n;b,mSa,nSb,m1 (
a,n51

N0

Ja,nSa,n

5
1

2 (
a,b,n51

N0

DabSa,n~Sb,n111Sb,n21!

1
A

2(
n51

N0 S (
a51

N0

Sa,n21D 21 B

2(
a51

N0

(
nÞm

N0

Sa,nSa,m ,

~6.1!

where Potts spin variablesSa,n(51or 0) satisfy the con-
straints(n51

N0 Sa,n51(a51, . . . ,N0). The MFT free energy
for the Potts spin model~6.1! is given by

F~V!5E~V!1TH~V!5
1

2 (
a,b,n,m51

N0

Wa,n;b,mVa,nVb,m

1 (
a,n51

N0

Ja,nVa,n1T (
a,n51

N0

Va,nlnVa,n , ~6.2!

where the analog variablesVa,nP@0,1# represent the prob-
ability thatSa,n takes a value 1 and satisfies the constraint:

(
n51

N0

Va,n51 ~a51, . . . ,N0!. ~6.3!

Both the free energy function~6.2! and the constraint~6.3!
are invariant under theN0th order cyclic transformation~4.2!
and theN0th order reverse transformation~4.3!. Therefore,
minima withNth order cyclic symmetry~4.6! may appear if
N05NN1 . They may or may not haveNth order reverse
symmetry~4.7!. If they have reverse symmetry, there must
beN1 equivalent minima due to theN0th order cyclic trans-
formation invariance as in Sec. V. If they do not have reverse
symmetry, there must be 2N1 equivalent minima due to the
N0th order cyclic and reverse transformation invariance.

The gradient and the curvature of the entropy function
H are given by Da,nH5 lnVa,n11 and Da,nDb,mH
5dabdnm /Va,n . Since some values ofVa,n are zero at the
boundary, the gradient ofH, Da,nH, diverges at the bound-
ary. Since 1/Va,n>1, H(V) is a convex function. Then, the
same argument as in Sec. III A can be made. Namely, a
minimum of the free energy function~6.2! with the con-
straint ~6.3! occurs at the interior point and one can neglect
the boundary constraint 0<Va,n<1 in the local analysis of
the minima.

Let us define a new coordinateya,k by

Va,n5
1

N0
(

kPGN0

ya,ka~k!n ~a,n51, . . . ,N0!, ~6.4!

wherea(k) is defined by~4.12! with N5N0 . SinceVa,n is
real andā(k)5a(2k),

ȳa,k5ya,2k ~a51, . . . ,N0 ;kPGN0
! ~6.5!

is satisfied. By using the relation

(
n51

N0

a~k!n50 for kÞ0, kPGN0
, ~6.6!

the constraint~6.3! can be explicitly solved as

(
n51

N0

Va,n5ya,051 ~a51, . . . ,N0!. ~6.7!

Then, the problem is reduced to finding the minimum of the
free energy function~6.2!, in which ya,0 is fixed to 1, with
respect toya,k for kÞ0. The free energy is still invariant
under theN0th order cyclic transformation:

ya,k→T m
@N0#ya,k[a~k!mya,k

~a,m51, . . . ,N0 ;kÞ0,kPGN0
! ~6.8!

and theN0th order reverse transformation:

ya,k→Rm
@N0#ya,k[a~k!mȳa,k

~a51, . . . ,N0 ;m50, . . . ,N021;kÞ0,kPGN0
!. ~6.9!
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Near the bifurcation point (V* ,Tc), which hasNth order
cyclic symmetry~4.6!, one can define eigenmode coordinate
zr ,k as in Sec. IV B by using the eigenvectors of the curva-
ture matrixDDF(V* ,Tc). The transformation properties of
the eigenmode coordinatezr ,k underNth order cyclic and
reverse transformations are the same as in~4.18! and~4.27!.
The analysis for the bifurcation of the minimum solution can
be done in the same way as in Sec. V. The only difference is
that theN0th order cyclic symmetry modeya,0 is fixed by the
constraint ~6.7!. Therefore, the minimum solution with
N0th order cyclic symmetry cannot appear or disappear by
the saddle-node bifurcation. Other types of bifurcations as
described in Sec. V can also occur in this model.

VII. DISCUSSION

In this paper, we investigated the MFT bifurcation pro-
cesses for MFT applied to traveling-salesman problems. Due
to the cyclic and reverse symmetries of the TSP free energy
function, some special bifurcations occur: cyclic symmetry
breaking bifurcations and reverse symmetry breaking bifur-
cations. Saddle-node bifurcations also occur. If the annealing
solution disappears at some temperature, the MFT annealing
does not give a unique solution, although the procedure is
deterministic. Moreover, the MFT annealing does not always
give the optimal solution.

The disappearance of the annealing solution as in Fig. 7 is
a very typical phenomenon in TSPs. The minima generated
through saddle-node bifurcations do not disappear, in most
cases. Therefore, if the disappearing point,Tc

d and Vd, is
known, the MFT annealing is nothing but a procedure that
obtains an MFT solution starting fromVd at the fixed tem-
peratureTc

d .
Although there is no general way of obtainingTc

d without
an annealing procedure, we can instead obtain the first cyclic
symmetry breaking bifurcation temperatureTc

s . When the
unique symmetric minimumVs disappears through a cyclic
symmetry breaking bifurcation,Tc

d5Tc
s andVd5Vs. When

the minima, whose cyclic symmetry has been broken, disap-
pear through a reverse symmetry breaking bifurcation as in
Fig. 7~a!, Tc

d is a little lower thanTc
s andVd is close toVs.

The symmetric solutionVs can be obtained with the reduced
free energy~4.5!, which is represented byN0 variables and
converges much faster than with the original free energy.

The stability of the symmetric solution can be found by cal-
culating the minimal eigenvalue of the free energy curvature
~4.10!. The eigenvalues can be obtained by solving a reduced
eigenequation~4.15! whose order isN1•N0 . Since the dis-
appearing temperatureTc

d is lower thanTc
s , we can obtain

Tc
d by conducting an annealing procedure starting fromTc

s .
Alternatively, Tc

d can be approximated just as a slightly
lower temperature thanTc

s . Vd can be approximated as the
symmetric solution at the approximatedTc

d .
The above-mentioned approximation procedure needs a

much smaller computation time than the original MFT an-
nealing procedure. After we can approximate the disappear-
ing point, it is sufficient to obtain the MFT solution starting
from the approximatedVd at the approximatedTc

d without
the annealing procedure. Furthermore, we can select the best
among many MFT solutions obtained by putting small ran-
dom terms on the initial condition. Preliminary experiments
have shown that this algorithm is faster and can achieve bet-
ter results than the MFT annealing.
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APPENDIX

The constants employed in~3.3a! in Sec. III A are given
as

a@1#n5Dn
3F5Tc~Dn

3H !5Tc~2Vn*21!/@Vn* ~12Vn* !#2,
~A1a!

a@2#n5Dn
4F5Tc~Dn

4H !

52Tc@3~Vn* !223Vn*11#/@Vn* ~12Vn* !#3,

~A1b!

b@1#n5DTDnF5DnH5 ln@Vn* /~12Vn* !#, ~A1c!

b@2#n5DTDn
2F5Dn

2H51/@Vn* ~12Vn* !#. ~A1d!

The solutiondVs0 with theNth order cyclic and reverse
symmetry, and the constantD0 in Sec. V B 1 are given as

dVa,i1~n21!N1

s0 52e (
x~r ,0!51

1

l~r ,0!
va,i~r ,0!S (

b51

N0

(
j51

N1

b@1#b, jvb, j~r ,0!D 1O~e2!, ~A2!

D05
(x~r ,0!51@a@1#v2~0,0!v~r ,0!#@b@1#v~r ,0!#/l~r ,0!2@b@2#v2~0,0!#

1

6
@a@2#v4~0,0!#2 (

x~r ,0!51
@a@1#v2~0,0!v~r ,0!#2/@2l~r ,0!#

, ~A3!

where abbreviated notations@a@1#v2(0,0)v(r ,0)#[(a51
N0 ( j51

N1 a@1#a, jva, j
2 (0,0)va, j (r ,0), etc. are used.

The solutiondVs1 with Nth order cyclic symmetry, and the constantD1 in Sec. V B 2 are given as

dVa,i1~n21!N1

s 52e (
r50

N0N121
1

l~r ,0!
va,i~r ,0!S (

b51

N0

(
j51

N1

b@1#b, jvb, j~r ,0!D 1O~e2!, ~A4!
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D15
( r50
N0N121

@a@1#v2~0,N/2!v~r ,0!#@b@1#v~r ,0!#/l~r ,0!2@b@2#v2~0,N/2!#

1

6
@a@2#v4~0,N/2!#2 (

r50

N0N121

@a@1#v2~0,N/2!v~r ,0!#2/@2l~r ,0!#

. ~A5!

The constantsd’s employed in~5.11! in Sec. V C 1 are given as

d1/552b@2#22a@1#b@1#/l~0!, ~A6a!

d2/55a@2#22a2@1#/l~0!2a2@1#/l~2!, ~A6b!

d3/555a3@1#/@8l2~2!#25a@1#a@2#/@12l~2!#1a@3#/24. ~A6c!
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